机构地区:[1]National Engineering Research Center of Rare Earth Materials, General Research Institute for Non-ferrous Metals [2]Grirem Advanced Materials Co.,Ltd.
出 处:《Journal of Rare Earths》2018年第10期1084-1089,共6页稀土学报(英文版)
基 金:Project supported by National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2015BAB16B03);the National Nature Science Foundation of China(51504034,51674037)
摘 要:In order to improve the application values of Ce element, in this paper, rare earth chloride solution was used as raw material, the pH value was controlled by inorganic alkali, the ceria powders with special physical properties were prepared by carbon dioxide carbonization method. According to characterization of SEM, XRD, and TG-DSC, Ce(OH)3 prepared at pH = 7.5 exhibits smaller particle size than that prepared at other conditions. CeO2 precursor obtained by direct carbonization of Ce(OH)3 shows smaller particle size and narrow size distribution, CeO2 precursor forms at first by carbonization of Ce(OH)3 with the continuous addition of CO2 gas,and the chemical component is indicated to be Ce2 O(CO3)2·6 H2 O.Cubic phase CeO2 powders are obtained by calcined at 750 ℃ for 4 h. The mean particle size D(50) is0.941 μm, and particle size distribution is smaller than 1. The microscopic appearance is homogeneous,with a spherical-like shape and a grain size of 200-500 nm. The light quality characteristics of sedimentation volume and accumulation density are obviously better than those of carbonate precipitation products. The carbonization method can be used not only to obtain ultra-fine rare earth oxides with fine particle size, narrow distribution and high dispersion properties, but also to achieve the reuse of carbon dioxide greenhouse gas.In order to improve the application values of Ce element, in this paper, rare earth chloride solution was used as raw material, the pH value was controlled by inorganic alkali, the ceria powders with special physical properties were prepared by carbon dioxide carbonization method. According to characterization of SEM, XRD, and TG-DSC, Ce(OH)3 prepared at pH = 7.5 exhibits smaller particle size than that prepared at other conditions. CeO2 precursor obtained by direct carbonization of Ce(OH)3 shows smaller particle size and narrow size distribution, CeO2 precursor forms at first by carbonization of Ce(OH)3 with the continuous addition of CO2 gas,and the chemical component is indicated to be Ce2 O(CO3)2·6 H2 O.Cubic phase CeO2 powders are obtained by calcined at 750 ℃ for 4 h. The mean particle size D(50) is0.941 μm, and particle size distribution is smaller than 1. The microscopic appearance is homogeneous,with a spherical-like shape and a grain size of 200-500 nm. The light quality characteristics of sedimentation volume and accumulation density are obviously better than those of carbonate precipitation products. The carbonization method can be used not only to obtain ultra-fine rare earth oxides with fine particle size, narrow distribution and high dispersion properties, but also to achieve the reuse of carbon dioxide greenhouse gas.
关 键 词:Carbon dioxide Carbonization method CERIA Green Special physical properties Rare earths
分 类 号:TQ133.3[化学工程—无机化工] TB383.3[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...