Synthesis and luminescent properties of BaGd_2O_4:Eu^(3+) phosphors with highly efficient red-emitting  被引量:6

Synthesis and luminescent properties of BaGd_2O_4:Eu^(3+) phosphors with highly efficient red-emitting

在线阅读下载全文

作  者:Yue Li Jinkai Li Zongming Liu Weilin Zhao 

机构地区:[1]School of Materials Science and Engineering, University of Jinan

出  处:《Journal of Rare Earths》2018年第8期795-801,共7页稀土学报(英文版)

基  金:Project supported by the National Natural Science Foundation of China(51402125);China Postdoctoral Science Foundation(2017M612175);the Special Fund for the Postdoctoral Innovation Project in Shandong Province(201603061);the Research Fund for the Doctoral Program of University of Jinan(XBS1447);the Natural Science Foundation of University of Jinan(XKY1515);the Science Foundation for Post Doctorate Research from the University of Jinan(XBH1607)

摘  要:The BaGd(2-2 x)Eu(2 x)O4(BG, x = 0.01-0.09) phosphors were successfully synthesized via the sol-gel method,and BaY(2-2 y)Eu(2 y)O4(BY, y = 0.005-0.07) phosphors were included for comparison. The pure phase BG phosphors with the ordered CaFe2 O4-type structure are obtained by annealing at 1300℃ for5 h. The phosphors with uniform particle size of 120 nm and good dispersion display typical Eu^3+emission with the strongest peak at 613 nm(^5 D0→^7 F2 transition of Eu3+) under optimal excitation band at 262 nm(CTB band). The presence of Gd^3+ excitation bands on the PLE spectra monitoring the Eu3+emission directly proves an evidence of Gd^3+-Eu^3+ energy transfer. Owing to the concentration quenching, the optimum content of Eu3+ addition is 5 at%(x = 0.05), and the quenching mechanism is determined to be the exchange reaction between Eu3+. All the BG samples have similar color coordinates and temperature of(0.64 ± 0.02, 0.36 ± 0.01) and 2000 ± 100 K,respectively. The lifetime value of BaGd(1.9)Eu(0.1)O4 for 613 nm is fitted to be 2.19 ± 0.01 ms, and the Eu^3+ concentration does not change the lifetime significantly. Owing to the Gd^3+-Eu^3+ energy transfer, the luminescent intensity of the BaGd(1.9)Eu(0.1)O4 phosphor is better than BY system. The BG system served as a new type of phosphor is expected to be widely used in lighting and display areas.The BaGd(2-2 x)Eu(2 x)O4(BG, x = 0.01-0.09) phosphors were successfully synthesized via the sol-gel method,and BaY(2-2 y)Eu(2 y)O4(BY, y = 0.005-0.07) phosphors were included for comparison. The pure phase BG phosphors with the ordered CaFe2 O4-type structure are obtained by annealing at 1300℃ for5 h. The phosphors with uniform particle size of 120 nm and good dispersion display typical Eu^3+emission with the strongest peak at 613 nm(^5 D0→^7 F2 transition of Eu3+) under optimal excitation band at 262 nm(CTB band). The presence of Gd^3+ excitation bands on the PLE spectra monitoring the Eu3+emission directly proves an evidence of Gd^3+-Eu^3+ energy transfer. Owing to the concentration quenching, the optimum content of Eu3+ addition is 5 at%(x = 0.05), and the quenching mechanism is determined to be the exchange reaction between Eu3+. All the BG samples have similar color coordinates and temperature of(0.64 ± 0.02, 0.36 ± 0.01) and 2000 ± 100 K,respectively. The lifetime value of BaGd(1.9)Eu(0.1)O4 for 613 nm is fitted to be 2.19 ± 0.01 ms, and the Eu^3+ concentration does not change the lifetime significantly. Owing to the Gd^3+-Eu^3+ energy transfer, the luminescent intensity of the BaGd(1.9)Eu(0.1)O4 phosphor is better than BY system. The BG system served as a new type of phosphor is expected to be widely used in lighting and display areas.

关 键 词:BaGd2O4 host Eu^3+ doped Sol-gel method Luminescent properties Rare earths 

分 类 号:TQ422[化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象