基于正交实验的水源井水腐蚀影响因素及腐蚀预测  被引量:5

Influence Factors and Corrosion Prediction of Water Source Well Corrosion based on Orthogonal Experiment

在线阅读下载全文

作  者:黄丽 陈昱铭 韩鑫[1] 曾庆恒[1] Huang Li;Chen Yuming;Han Xin;Zeng Qingheng(School of Petroleum Engineering,Chongqing University of Science &Technology,Chongqing 401331,China;Research Institute Three Mining,PetroChina Jilin Oilfield Company Petroleum Engineering,Songyuan Jilin 138000,China)

机构地区:[1]重庆科技学院石油与天然气工程学院,重庆401331 [2]吉林油田油气工程研究院三次采油研究所,吉林松原138000

出  处:《辽宁石油化工大学学报》2018年第6期54-58,共5页Journal of Liaoning Petrochemical University

基  金:重庆科技学院研究生科技创新计划项目(YKJCX1620132)

摘  要:针对SZ36-1油田水源井水对油管腐蚀穿孔的影响日益严重的问题,在现场工况下研究了管材的腐蚀规律并对腐蚀进行了预测。设计5因素4水平的正交实验,分析了温度、压力、流速、CO2质量浓度和矿化度等5个因素对腐蚀速率的影响,确定了SZ36-1油田水源井腐蚀环境下的主控因素是温度和CO2质量浓度。通过多元线性回归分析方法和BP神经网络方法,建立腐蚀预测模型并进行了对比分析。对比分析结果表明,基于多元线性回归方法的腐蚀预测模型预测精度更高,更适合目前油田水源井水的腐蚀预测。In view of the increasingly serious problem of corrosion and perforation of the oil pipe caused by water source well in the SZ36-1 oilfield, the corrosion law of the pipe is studied under field conditions and the corrosion is predicted. The Orthogonal experiment of five factors and four levels is designed to analyze the effects of temperature, pressure, flow rate, CO 2 concentration and salinity on the corrosion rate.The main controlling factors in the corrosion environment of the water source well of SZ36-1 oilfield are temperature and CO 2 concentration. The corrosion prediction model is established and compared by multiple linear regression analysis and BP neural network. The comparative analysis results show that the corrosion prediction model based on multiple linear regression method has higher prediction accuracy and is more suitable for corrosion prediction of oilfield water source well.

关 键 词:水源井腐蚀 腐蚀因素 正交实验 腐蚀预测 

分 类 号:TE38[石油与天然气工程—油气田开发工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象