检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘向洋 崔刚龙 Xiang-Yang Liu;Ganglong Cui(Key Laboratory of Theoretical and Computational Photochemistry,Ministry of Education,College of Chemistry,Beijing Normal University,Beijing 100875,China)
机构地区:[1]北京师范大学化学学院,理论与计算光化学教育部重点实验室,北京100875
出 处:《科学通报》2018年第33期3453-3466,共14页Chinese Science Bulletin
基 金:国家优秀青年科学基金(21522302)资助
摘 要:过渡金属配合物由于其特殊的激发态性质,在能源、材料、生物等领域有着广阔的应用前景.对其激发态性质和微观动力学的深入理解不仅需要借助于超快的时间分辨光谱技术,还需要结合高精度的非绝热动力学模拟.然而,由于该类体系激发态比较复杂,相应的非绝热动力学模拟方法仍有待进一步发展.为此,我们简要回顾了目前该类体系非绝热动力学模拟方法的进展与这些方法的一些局限性,在此基础上,重点介绍了本课题组所发展并程序化了的一种高效的基于含时密度泛函理论(TD-DFT)的广义最少面跳跃方法.该方法可以在TD-DFT水平下模拟相同自旋态之间的内转换过程以及不同自旋态之间的系间窜跃过程.利用新发展的方法,我们系统地研究了一系列过渡金属配合物超快的激发态动力学过程,如铱(III)配合物的电子-空穴转移过程,以及金(I)配合物超快的系间窜跃过程,模拟结果不仅与已有的实验数据相吻合,还提供了许多这些超快过程新的机理信息.该方法的发展为研究过渡金属配合物的激发态动力学提供了强有力的理论模拟工具.Excited-state related properties of transition metal complexes have received much attention in recent years due to their potential applications in the field of energy, material and biology. To fully understand the underlying mechanism, we always need to resort to ultrafast time-resolved spectroscopies as well as reliable ab initio nonadiabatic dynamics simulations. However, nonadiabatic dynamics simulation methods that are suitable for investigating excited-state dynamics of transition metal complexes still demand further developments to improve simulation efficiency and accuracy. In this short review, we have shortly present some recent developments of non-adiabatic dynamics methods that are suitable for investigating excited state properties of transition metal complexes, mainly including Multi-Configuration Time Dependent Hartree(MCTDH) and mixed quantum-classical surface hopping methods. In addition, we have introduced our recently developed TD-DFT-based generalized trajectory surface hopping method in which an efficient algorithm of computing nonadiabatic couplings is realized. In combination with the classical path approximation, this newly developed method can effectively simulate internal conversion and intersystem crossing processes of transition metal complexes on an equal footing. With this newly developed method, we have systematically investigated the early-time ultrafast excited-state dynamics of three Ir(III) complexes bearing distinct ligands. The ISC rates estimated by our simulations are 65, 81 and 140 fs, which agree quite well with experimentally measured ca. 80, 80 and 110 fs. These Ir(III) complexes show similar macroscopic phenomena, i.e., ultrafast IC and ISC, their microscopic excited-state relaxation dynamics are individually different, for example, electron and hole transfer dynamics. These new insights for excited-state dynamics of Ir(III) complexes could be helpful for rationally designing Ir-containing compounds with excellent photoluminescence performance. In additio
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7