Modeling of normal faulting in the subducting plates of the Tonga,Japan,Izu-Bonin and Mariana Trenches:implications for near-trench plate weakening  被引量:5

Modeling of normal faulting in the subducting plates of the Tonga, Japan, Izu-Bonin and Mariana Trenches:implications for near-trench plate weakening

在线阅读下载全文

作  者:ZHOU Zhiyuan LIN Jian ZHANG Fan 

机构地区:[1]Key Laboratory of Ocean and Marginal Sea Geology,South China Sea Institute of Oceanology,Chinese Academy of Sciences,Guangzhou 510301,China [2]Department of Geology and Geophysics,Woods Hole Oceanographic Institution,Woods Hole,Massachusetts 02543,USA [3]Department of Ocean Science and Engineering,Southern University of Science and Technology,Shenzhen 518055,China

出  处:《Acta Oceanologica Sinica》2018年第11期53-60,共8页海洋学报(英文版)

基  金:The National Natural Science Foundation of China under contract Nos 41706056,91628301 and U1606401;the Program of Chinese Academy of Sciences under contract Nos Y4SL021001,QYZDY-SSW-DQC005,YZ201325 and YZ201534;the Natural Science Foundation of Guangdong Province of China under contract No.2017A030310066;the China Ocean Mineral Resources R&D Association under contract No.DY135-S2-1-04

摘  要:The plate flexure and normal faulting characteristics along the Tonga, Japan, Izu-Bonin and Mariana Trenches are investigated by combining observations and modeling of elastoplastic deformation of the subducting plate. The observed average trench relief is found to be the smallest at the Japan Trench(3 km) and the largest at the Mariana Trench(4.9 km), and the average fault throw is the smallest at the Japan Trench(113 m) and the largest at the Tonga Trench(284 m). A subducting plate is modeled to bend and generate normal faults subjected to three types of tectonic loading at the trench axis: vertical loading, bending moment, and horizontal tensional force. It is inverted for the solutions of tectonic loading that best fit the observed plate flexure and normal faulting characteristics of the four trenches. The results reveal that a horizontal tensional force(HTF) for the Japan Trench is 33%, 50% and 60% smaller than those of the Mariana, Tonga and Izu-Bonin Trenches, respectively. The normal faults are modeled to penetrate to a maximum depth of 29, 23, 32 and 32 km below the sea floor for the Tonga,Japan, Izu-Bonin and Mariana Trenches, respectively, which is consistent with the depths of relocated normal faulting earthquakes in the Japan and Izu-Bonin Trenches. Moreover, it is argued that the calculated horizontal tensional force is generally positively correlated with the observed mean fault throw, while the integrated area of the reduction in the effective elastic thickness is correlated with the trench relief. These results imply that the HTF plays a key role in controlling the normal faulting pattern and that plate weakening can lead to significant increase in the trench relief.The plate flexure and normal faulting characteristics along the Tonga, Japan, Izu-Bonin and Mariana Trenches are investigated by combining observations and modeling of elastoplastic deformation of the subducting plate. The observed average trench relief is found to be the smallest at the Japan Trench(3 km) and the largest at the Mariana Trench(4.9 km), and the average fault throw is the smallest at the Japan Trench(113 m) and the largest at the Tonga Trench(284 m). A subducting plate is modeled to bend and generate normal faults subjected to three types of tectonic loading at the trench axis: vertical loading, bending moment, and horizontal tensional force. It is inverted for the solutions of tectonic loading that best fit the observed plate flexure and normal faulting characteristics of the four trenches. The results reveal that a horizontal tensional force(HTF) for the Japan Trench is 33%, 50% and 60% smaller than those of the Mariana, Tonga and Izu-Bonin Trenches, respectively. The normal faults are modeled to penetrate to a maximum depth of 29, 23, 32 and 32 km below the sea floor for the Tonga,Japan, Izu-Bonin and Mariana Trenches, respectively, which is consistent with the depths of relocated normal faulting earthquakes in the Japan and Izu-Bonin Trenches. Moreover, it is argued that the calculated horizontal tensional force is generally positively correlated with the observed mean fault throw, while the integrated area of the reduction in the effective elastic thickness is correlated with the trench relief. These results imply that the HTF plays a key role in controlling the normal faulting pattern and that plate weakening can lead to significant increase in the trench relief.

关 键 词:normal fault geodynamic model plate weakening flexural bending elasto-plastic deformation 

分 类 号:P736[天文地球—海洋地质]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象