检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕净阁 LV Jingge(School of Mathematics and Big Data,Anhui University of Science and Technology,Huainan Anhui 232000,China)
机构地区:[1]安徽理工大学数学与大数据学院,安徽淮南232000
出 处:《阜阳师范学院学报(自然科学版)》2018年第4期63-68,共6页Journal of Fuyang Normal University(Natural Science)
基 金:安徽省高校学科(专业)拔尖人才学术资助重点项目(gxbjZD2016049)资助
摘 要:针对如何对动态环境下的流数据进行实时处理的问题,研究了一种基于权重平衡和共轭对偶梯度算法(CDG)的分布式在线学习优化算法—分布式在线共轭对偶梯度算法(DO-CDG)。首先,针对分布式在线优化问题,在CDG算法的基础上建立了数学模型并设计了DO-CDG算法,并进行求解;其次,给出算法的Regret界用于表征在线算法的优劣性,证明了当本地损失函数是强凸函数时,DO-CDG算法的收敛性以及本地估计的Regret界关于时间的次线性;最后,经过数据仿真实验,证明了算法的收敛性。Aiming at the problem of real- time processing of flowing data in dynamic environment, a distributed online learning optimization algorithm—distributed online conjugate dual gradient algorithm (DO-CDG) was studied based on weighted balance and conjugate dual gradient algorithm (CDG). Firstly, for the problem of distributed online optimization, a mathematical model was established based on the CDG algorithm and an DO-CDG algorithm is designed to solve it; Secondly, a Regret bound of distributed online optimization algorithm was given to evaluate the performance of online algorithm and proved the convergence of the DO-CDG algorithm for the cases that the local loss functions are strongly convex, and the Regret bound is upper bounded sublinearly in the time ; Finally, simulation experiments proved the convergence of the DO-CDG algorithm.
分 类 号:TP306.1[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222