检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京大学计算机软件新技术国家重点实验室,南京210093 [2]南京大学计算机科学与技术系,南京210093
出 处:《计算机工程与应用》2002年第17期100-102,共3页Computer Engineering and Applications
摘 要:NaveBayes分类器作为一种计算简单、精度较高的分类方法,已经得到了广泛应用。但是其所作的假设:各属性之间相互独立却非常容易在现实中被违背,阻碍了分类器精度的进一步提高。而Bayes网络较好地考虑了属性之间的依赖关系,但是其计算相当复杂。AugmentedBayes分类器将两者的优点结合在一起,既考虑了属性之间的依赖关系,又保证了算法的简单性。该文从属性所拥有的信息量出发考虑,提出了AugmentedBayes分类器的一种基于熵的学习方法。最后,通过测试数据将该方法与NaveBayes分类器和SuperParent算法进行了比较。Nave Bayesian Classifier has been broadly in practice because of its efficient computation and good performance.But the assumption that all attributes are independent is easily violated in real world and it is an obstacle to refine the accuracy.Bayesian Network relaxes the assumption of independence,but its algorithm is very complex.Upon the consideration of the conditional dependence Augmented Bayesian classifier remains the efficient computation.This paper explores an entropy-based approach of learning augmented Bayesian classifier.Finally this method is compared to Nave Bayes and SuperParent through test data.
关 键 词:AUGMENTED BAYES分类器 学习方法 熵分析 机器学习
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222