Difference Discrete Variational Principle,Euler—Lagrange Cohomology and Symplectic,Multisymplectic Structures II:Euler—Lagrange Cohomology  被引量:9

Difference Discrete Variational Principle, Euler?Lagrange Cohomology and Symplectic, Multisymplectic Structures II: Euler?Lagrange Cohomology

在线阅读下载全文

作  者:GUOHan-Ying WUKe 等 

机构地区:[1]InstituteofTheoreticalPhysics,AcademiaSinica,P.O.Box2735,Beijing100080,China

出  处:《Communications in Theoretical Physics》2002年第2期129-138,共10页理论物理通讯(英文版)

基  金:国家自然科学基金,国家重点基础研究发展计划(973计划)

摘  要:In this second paper of a series of papers, we explore the difference discrete versions for the Euler?Lagrange cohomology and apply them to the symplectic or multisymplectic geometry and their preserving properties in both the Lagrangian and Hamiltonian formalisms for discrete mechanics and field theory in the framework of multi-parameter differential approach. In terms of the difference discrete Euler?Lagrange cohomological concepts, we show that the symplectic or multisymplectic geometry and their difference discrete structure-preserving properties can always be established not only in the solution spaces of the discrete Euler?Lagrange or canonical equations derived by the difference discrete variational principle but also in the function space in each case if and only if the relevant closed Euler?Lagrange cohomological conditions are satisfied.

关 键 词:discrete variation Euler-Lagrange cohomology symplectic and multisymplectic structures 

分 类 号:O316[理学—一般力学与力学基础]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象