检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨敬安
出 处:《Journal of Computer Science & Technology》1999年第6期539-550,共12页计算机科学技术学报(英文版)
摘 要:This paper proposes a new neural algorithm to perform the segmentation of an observed scene into regions corresponding to different moving objects byanalyzing a time-varying images sequence. The method consists of a classificationstep, where the motion of small patches is characterized through an optimizationapproach, and a segmentation step merging neighboring patches characterized bythe same motion. Classification of motion is performed without optical flow computation, but considering only the spatial and temporal image gradients into anappropriate energy function minimized with a Hopfield-like neural network givingas output directly the 3D motion parameter estimates. Network convergence is accelerated by integrating the quantitative estimation of motion parameters with aqualitative estimate of dominant motion using the geometric theory of differentialequations.This paper proposes a new neural algorithm to perform the segmentation of an observed scene into regions corresponding to different moving objects byanalyzing a time-varying images sequence. The method consists of a classificationstep, where the motion of small patches is characterized through an optimizationapproach, and a segmentation step merging neighboring patches characterized bythe same motion. Classification of motion is performed without optical flow computation, but considering only the spatial and temporal image gradients into anappropriate energy function minimized with a Hopfield-like neural network givingas output directly the 3D motion parameter estimates. Network convergence is accelerated by integrating the quantitative estimation of motion parameters with aqualitative estimate of dominant motion using the geometric theory of differentialequations.
关 键 词:qualitative description of motion field time-varying image sequence geometric theory of differential equation Hopfield-like neural network quantitative interpretation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222