A Neural Paradigm forTime-Varying Motion Segmentation  

A Neural Paradigm for Time-Varying Motion Segmentation

在线阅读下载全文

作  者:杨敬安 

出  处:《Journal of Computer Science & Technology》1999年第6期539-550,共12页计算机科学技术学报(英文版)

摘  要:This paper proposes a new neural algorithm to perform the segmentation of an observed scene into regions corresponding to different moving objects byanalyzing a time-varying images sequence. The method consists of a classificationstep, where the motion of small patches is characterized through an optimizationapproach, and a segmentation step merging neighboring patches characterized bythe same motion. Classification of motion is performed without optical flow computation, but considering only the spatial and temporal image gradients into anappropriate energy function minimized with a Hopfield-like neural network givingas output directly the 3D motion parameter estimates. Network convergence is accelerated by integrating the quantitative estimation of motion parameters with aqualitative estimate of dominant motion using the geometric theory of differentialequations.This paper proposes a new neural algorithm to perform the segmentation of an observed scene into regions corresponding to different moving objects byanalyzing a time-varying images sequence. The method consists of a classificationstep, where the motion of small patches is characterized through an optimizationapproach, and a segmentation step merging neighboring patches characterized bythe same motion. Classification of motion is performed without optical flow computation, but considering only the spatial and temporal image gradients into anappropriate energy function minimized with a Hopfield-like neural network givingas output directly the 3D motion parameter estimates. Network convergence is accelerated by integrating the quantitative estimation of motion parameters with aqualitative estimate of dominant motion using the geometric theory of differentialequations.

关 键 词:qualitative description of motion field time-varying image sequence geometric theory of differential equation Hopfield-like neural network quantitative interpretation 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] O241.8[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象