检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京航空航天大学计算机科学与工程系,北京100083 [2]北京航空航天大学飞行器设计与应用力学系,北京100083
出 处:《系统工程理论与实践》2002年第9期117-120,127,共5页Systems Engineering-Theory & Practice
摘 要:建立了空对空作战体系对抗的物理模型 ,基于多元兰彻斯特方程 ,给出了不同空战武器战术交战的数学模型 ,考虑现代战争的高技术特征 ,发展了战役优势参数的概念 ,使其更加准确地反映空对空作战的实质 .以数学模型和战役优势参数为核心 ,采用随机分配目标战术和用“对数法”计算战斗机对空作战能力指数 ,实现了优势评估、进程预测、装备反算。The physical model for tactical many\|to\|many engagement of an aerial warfare was established. On the basis of Lanchester multivariate equations, a mathematical model corresponding to the established physical model was worked out. With a view to the high tech condition of modern warfare, the concept of superiority parameter which more well and truly reflects the essential of an air\|to\|air engagement has been formulated. The attrition coefficients were determined by using the tactics of random target distribution and the air\|to\|air capability index of the combat aircraft. Taking the mathematical model and the superiority parameter as core, calculations and analyses of the complicate systemic problems such as evaluation of battle superiority, prognostication of combat process, inverse computation of weapon system amount and optimization of collocations have been accomplished.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222