基于直方图加权HCBP的人脸表情识别  被引量:10

Facial expression recognition based on histogram weighted HCBP

在线阅读下载全文

作  者:胡敏[1] 李堃[1] 王晓华[1] 任福继[1] 

机构地区:[1]合肥工业大学计算机与信息学院计算机系,合肥230009

出  处:《电子测量与仪器学报》2015年第7期953-960,共8页Journal of Electronic Measurement and Instrumentation

基  金:国家"863"计划(2012AA011103);安徽省科技攻关(1206c0805039);国家自然科学青年基金(61300119);国家自然科学基金(61432004)资助项目

摘  要:针对局部二值模式(Local binary pattern,LBP)及其改进算法所提取的特征维数过长、局部特征描述不够充分的缺点,提出了一种基于直方图加权HCBP(Haar-like centralized binary pattern,HCBP)的人脸表情识别方法。首先将人脸图像分成大小均匀的若干子块,利用HCBP算子提取各子块的纹理特征;然后通过信息熵的计算求得各子图像的权值,将加权子块HCBP特征直方图和原图像的HCBP直方图进行联合作为表情特征;最后,使用最近邻分类器对特征进行分类。Haar型特征与CBP相结合使得本文特征提取算法对局部特征的描述更为充分,信息熵的引入区分了人脸不同部位对表情的贡献程度。通过在JAFFE和Cohn-Kanade人脸表情库的实验证明:本文方法具有更高的识别率和识别效率。In order to overcome the limitation of local binary pattern( LBP) and its improved algorithm,a facial expression method based on histogram weighted HCBP is proposed. Firstly,facial image is divided into some uniform sub-image,and HCBP operator is used to extract texture feature. Then the information entropy is used to calculate the weight of every sub-image,weighted HCBP histogram of sub-image is combined with the HCBP histogram of the original image,and the result histogram image is accomplished as the facial expression feature. Finally,the expression is classified with the nearest neighbor classifier. Using the combination of Haar-like feature and CBP operator makes the description of local feature more sufficient. The introduction of information entropy can distinguish the contribution of different partitions of the face. The experimental results in JAFFE library and Cohn-Kanade library show that the HCBP method outperforms than existing LBP methods in both the recognition rate and the speed.

关 键 词:局部二值模式 HCBP算子 人脸表情识别 直方图加权 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象