检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张剑[1] 刘萍萍[2] Zhang Jian;Liu Pingping(Department of Computer Engineering,Shanxi Polytechnic College,Taiyuan 030006,China;Department of Computer Science,Xi’an Technological University,Xi’an 710021,China)
机构地区:[1]山西职业技术学院计算机工程系,太原030006 [2]西安工业大学计算机科学系,西安710021
出 处:《电子测量与仪器学报》2018年第11期194-201,共8页Journal of Electronic Measurement and Instrumentation
基 金:新型网络与检测控制国家地方联合工程实验室基金(GSYSJ20170009)资助项目
摘 要:基于稀疏编码的方法在单幅图像的超分辨率重建中获得了一定的成功,但是这类方法却存在着重建出错误的边缘和重建的图像块之间差异性的丢失等问题。为了解决这些问题,认为一幅高分辨率图像是由边缘成分和纹理成分两部分组成,提出了一种基于L0范数和非局部拉普拉斯稀疏编码的单幅图像超分辨率重建方法。首先,为了能够重建出正确的图像边缘,提出了一种基于L0范数的针对图像边缘的超分辨率重建方法;然后,在纹理成分的超分辨率重建阶段,提出了一种非局部的拉普拉斯稀疏编码(NLSC)来实现图像纹理成分的超分辨率重建;最后,试验结果表明,提出的方法能够有效解决现有方法中存在的问题,获得更高质量的高分辨率图像。Methods based on sparse coding have been successfully used in single-image super-resolution reconstruction. However, there are problems about incorrect edges and difference loss among the reconstructed image patches. To overcome these problems, we assume that a high resolution image consists of two components: the edge component and the texture component, hence propose a new approach based on L0 norm and non-local Laplacian sparse coding for single-image super-resolution reconstruction. First, in order to correctly reconstruct image edges, we propose a super-resolution reconstruction method based on L0-norm image edges. Second, for the texture component super-resolution reconstruction, a non-local Laplacian sparse coding is proposed. Finally, experiment results demonstrate that the proposed approach can overcome incorrect edges and difference loss effectively, and achieve more competitive single-image super-resolution quality.
关 键 词:超分辨率重建 边缘结构 纹理成分 L0范数 非局部拉普拉斯稀疏编码
分 类 号:TN911.73[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229