A staggered-grid high-order finite-difference modeling for elastic wave field in arbitrary tilt anisotropic media  

A staggered-grid high-order finite-difference modeling for elastic wave field in arbitrary tilt anisotropic media

在线阅读下载全文

作  者:裴正林 王尚旭 

机构地区:[1]University of Petroleum, Key Lab of Geophysical Exploration of CNPC, Beijing 100083, China

出  处:《Acta Seismologica Sinica(English Edition)》2005年第4期471-482,500,共13页

基  金:Fund Project of Key Lab of Geophysical Exploration of China National Petroleum Corporation (GPR0408).

摘  要:The paper presents a staggered-grid any even-order accurate finite-difference scheme for two-dimensional (2D), three-component (3C), first-order stress-velocity elastic wave equation and its stability condition in the arbitrary tilt anisotropic media; and derives a perfectly matched absorbing layer (PML) boundary condition and its stag- gered-grid any even-order accurate difference scheme in the 2D arbitrary tilt anisotropic media. The results of nu- merical modeling indicate that the modeling precision is high, the calculation efficiency is satisfactory and the absorbing boundary condition is better. The wave-front shapes of elastic waves are complex in the anisotropic media, and the velocity of qP wave is not always faster than that of qS wave. The wave-front triplication of qS wave and its events in both reflected domain and propagated domain, which are not commonly hyperbola, is a common phenomenon. When the symmetry axis is tilted in the TI media, the phenomenon of S-wave splitting is clearly observed in the snaps of three components and synthetic seismograms, and the events of all kinds of waves are asymmetric.The paper presents a staggered-grid any even-order accurate finite-difference scheme for two-dimensional (2D), three-component (3C), first-order stress-velocity elastic wave equation and its stability condition in the arbitrary tilt anisotropic media; and derives a perfectly matched absorbing layer (PML) boundary condition and its stag- gered-grid any even-order accurate difference scheme in the 2D arbitrary tilt anisotropic media. The results of nu- merical modeling indicate that the modeling precision is high, the calculation efficiency is satisfactory and the absorbing boundary condition is better. The wave-front shapes of elastic waves are complex in the anisotropic media, and the velocity of qP wave is not always faster than that of qS wave. The wave-front triplication of qS wave and its events in both reflected domain and propagated domain, which are not commonly hyperbola, is a common phenomenon. When the symmetry axis is tilted in the TI media, the phenomenon of S-wave splitting is clearly observed in the snaps of three components and synthetic seismograms, and the events of all kinds of waves are asymmetric.

关 键 词:anisotropic media elastic wave staggered-grid high-order finite-difference PML boundary 

分 类 号:P315.31[天文地球—地震学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象