非线性局部寻优时间弯曲校正及签名特征空间稳定性研究  被引量:8

A STUDY OF THE STABILITY OF SIGNATURE FEATURES BY NONLINEAR LOCAL OPTIMAL TIME WARPING

在线阅读下载全文

作  者:邱德红[1] 陈传波[1] 金先级[1] 陈杲[1] 

机构地区:[1]华中科技大学计算机科学与技术学院,武汉430074

出  处:《计算机研究与发展》2002年第10期1227-1232,共6页Journal of Computer Research and Development

基  金:华中科技大学博士后基金资助 ( K- K1 830 0 7)

摘  要:根据签名动态信息进行签名认证可以提高认证系统的安全性 ,它是在由签名动态信息的特征值张成的特征空间上的分类问题 .然而 ,签名动态信息时间序列的时间弯曲现象使得特征值分散 ,不容易在特征空间上确定出真签名的特征值稳定的子空间 ,在签名样本数量小时尤为如此 .因此提出一种非线性局部寻优时间弯曲校正方法 ,它具有较好的校正效果和较低的计算复杂度 .利用它对签名样本的动态信息时间序列进行校正 ,可以提高签名特征向量在特征空间上分布的聚拢性 ,拉开真、伪签名特征向量在特征空间上的距离 .综合利用非线性局部寻优时间弯曲校正方法和线性时间弯曲校正方法对有限数量的标准签名样本进行处理 ,可在特征空间划分出不同置信度的特征稳定的子空间 。Using dynamic information of signing to verify signatures can raise the safety of verifying systems. It is a problem of vector classification in the space spanned by the dynamic features of handwritten signatures. However, the discrete-time signals of sample signatures are usually warped to different extent at different positions, which distorts the distribution of the feature vectors obtained from these signals in feature space. Therefore, it is difficult to determine the stable subspace that separates the genuine signatures from forgery ones. This situation becomes worse when the total number of sample signatures is low. In this paper, a nonlinear local optimal time warping algorithm is put forward, which has low computational complexity but with good performance. It can effectively increase the compactness of the feature vectors of genuine signatures, and therefore enlarge the distance from the feature vectors of forgery ones. Through using the nonlinear local optimal time warping, together with the linear time warping, the feature space can be divided into several subspaces. Each subspace indicates genuine signatures with different confidence level. This enables the signature verification system to satisfy the requirement of different security.

关 键 词:非线性局部寻优时间弯曲校正 签名 特征空间 稳定性 签名认证 信息安全 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象