检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]集美大学水产生物技术研究所,水产学院,福建厦门361021
出 处:《上海水产大学学报》2002年第3期225-229,共5页Journal of Shanghai Fisheries University
基 金:福建省自然科学基金项目 (B9910 0 2 9)
摘 要:以杏林湾水库 1999年 10月至 2 0 0 1年 8月连续监测资料为基础 ,运用多元统计分析方法 ,选择透明度、水温等 8项环境因子与浮游轮虫密度进行回归统计分析 ,建立回归模型 ,并确定与浮游轮虫密度关系显著的环境因子。回归分析结果显示 ,南池透明度、盐度、纤毛类生物量是影响浮游轮虫密度的显著相关因子 ,北池浮游植物生物量 ,细菌总数量 ,纤毛类生物量、透明度量是影响浮游轮虫密度的显著相关因子。A mechanism model simulated density dynamics of the planktonic rotifer in Xinlin Bay Reservoir.The data were based on the samples taken at 2 months intervals from October and 1999 to August 2001.The factors included ciliate biomass, phytoplankton biomass, bacteria-density, temperature (T), salinity, dissolved oxygen(DO), water transparency(SD), chemical oxygen demand(COD) and the results showed that water transparency, salinity, ciliate biomass in south part of Xinlin Bay Reservoir were the dominant factors on controlling rotifer density, while phytoplankton biomass, bacteria-density, ciliate biomass, water transparency in north part of Xinlin Bay Reservoir were the dominant factors. By using multiple linear regression and non-linear regression to the model identification,two non-linear regression models were established.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15