用多个对应的后向神经网络进行同杆双回线故障识别及测距的模式  被引量:12

IDENTIFICATION AND LOCATION OF FAULT ON DOUBLE CIRCUIT TOWER BY MULTI-CORRESPONDING BP ANN METHOD

在线阅读下载全文

作  者:郭付军[1] 林军[1] 

机构地区:[1]福州大学电气系,福建省福州市350002

出  处:《电网技术》2002年第10期14-17,24,共5页Power System Technology

摘  要:电力系统高压同杆双回输电线的应用日益增多,但其故障识别与测距的问题尚未完全解决,同杆双回线因存在回路间耦合等因素,使得用单一的神经网络进行故障识别与测距的结果并不理想。作者比较分析了BP网络与Kohonen网络在同杆双回线测距方面的优缺点,提出了将故障识别与测距任务分配到多个网络的方法即将同杆双回线的每种故障模式各与一个BP人工神经网络对应,在线路上取一些固定点作为标志点,训练成功的BP网络输出的模糊值代表了标志点上发生故障的可能性。用模糊值构成插值曲线,根据曲线的相对位置确定故障模式,并由曲线的最小值求得故障距离。大量仿真表明该法可以准确可靠地确定故障模式并能测得较高的测距精度。In high voltage power transmission the double circuit tower is increasingly applied, but the problem of fault identification and location under this mode are still not well solved. Because of the coupling between the two circuits on the same tower, the results of fault identification and location by only single neural network are not satisfactory. After comparing the merit and demerit of applying BP network and Kohonen network to fault identification and location under this mode, a new method of fault identification and location under this mode is put forward. In this method the task of fault identification and location is distributed to multi-BP network, i.e., each pattern of the faults under this mode corresponds to a BP network respectively. Taking some fixed points in transmission line as marked points, the fuzzy value outputted from the trained BP network represents the possibility of occurring fault at marked point. Constituting the interpolating curves by use of fuzzy values, according to the relative position of the interpolating curves the fault pattern can be determined and the faulty position is equal to the minimum of the curve from the determined fault pattern. A lot of simulation results show that with the presented method the fault pattern can be exactly and reliably determined and the accuracy of fault location is satisfactory.

关 键 词:后向神经网络 同杆双回线 故障识别 测距 输电线路 

分 类 号:TM726[电气工程—电力系统及自动化] TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象