非连续变形计算力学模型中的广义有限单元  被引量:1

Generalized Finite Element of Discontinuous Deformation Computational Mechanics Model

在线阅读下载全文

作  者:黎勇[1] 冯夏庭[1] 栾茂田[2] 王泳嘉[1] 

机构地区:[1]东北大学资源与土木工程学院,辽宁沈阳110004 [2]大连理工大学土木系及海岸和近海工程国家重点实验室,辽宁大连116024

出  处:《东北大学学报(自然科学版)》2002年第10期1004-1007,共4页Journal of Northeastern University(Natural Science)

基  金:教育部优秀青年教师奖励计划资助项目;霍英东教育基金资助项目( 710 4 8) ;国家自然科学基金资助项目( 10 172 0 2 2 )

摘  要:阐述了广义结点的数学覆盖和物理覆盖、覆盖的类型及其特征·在此基础上 ,由广义结点构造数学覆盖 ,并介绍了不同类型的数学覆盖·广义有限单元是由数学覆盖、物理覆盖和本构关系构成 ,不同特性的数学覆盖和本构关系可构成不同特性的广义有限单元 ,以模拟多体系统中不同特性的物体 ,如刚体、弹性体、弹塑性体、粘弹性体和粘弹塑性体等 。Generalized node with generalized free of degree,mathematical cover and physical cover were presented. The mathematical cover is constituted of generalized nodes, and different types of mathematic cover were introduced. Generalized finite element is composed of mathematical cover and physical cover and constitutional relation. Different characteristic mathematical cover and constitutional relation form different characteristic generalized finite element to simulate different characteristic bodies in multi body system of interaction, such as rigid body,elastic body,elasto plastic body,viscoelastic body and viscoelastoplastic body. The fundamental matrixes and vectors of general generalized finite element were given out. Solid foundation was established for discontinuous deformation computational mechanics model on the hand of element discretization.

关 键 词:有限单元 有限块体 非连续变形 计算力学 广义结点 数学覆盖 物理覆盖 

分 类 号:O343[理学—固体力学] TU4[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象