基于SRank的社交网络影响力分析  

Analysis of social networks influence based on SRank

在线阅读下载全文

作  者:任留名 李廉[1] 唐敏龙 REN Liuming;LI Lian;TANG Minlong(College of Computer and Information, Hefei University of Technology, Hefei 230009, China)

机构地区:[1]合肥工业大学计算机与信息学院,合肥230009

出  处:《计算机工程与应用》2016年第16期95-99,共5页Computer Engineering and Applications

基  金:国家自然科学基金(No.61305064);国家高等学校学科创新引智计划("111")(No.B14025);国家科技支撑计划(No.2013BAH19F01);教育部直属高校外国文教专家年度聘请计划-学校特色项目(No.TS2013HFGY031)

摘  要:针对社交网络中用户影响力的评价问题,提出了一种基于SRank的评价算法。基于从社交网络中收集的大规模数据集,结合最近社会学理论研究成果分析PageRank及其改进算法应用于此场景中的不足。在此基础上总结社交网络中信息传播的规律,将用户与社交网络的关系强度定义为用户的人缘值,用来表示用户作为粉丝的信息再传播能力。然后提出了一个通过预测用户信息传播能力大小来分析和度量用户影响力的SRank用户影响力模型。在同样的数据集下相对于PageRank及其改进算法,SRank用户影响力模型获得了更好的影响力预测结果。基于大规模数据的实验结果表明,提出的方法是较为有效的。An evaluation algorithm based on SRank is proposed to evaluate the users’influence in social networks. Aftercollecting large scale data sets and recent theoretical research results of sociology, there lie some disadvantages in theapplication of PageRank user influence model. Besides, the rules of information in social networks is analyzed, it is definedthat the strength of relationship between the user and the social network as the Value of User Popularity(VUP)which isused to describe user’s information re communication ability. It is put forward a user influence model based on SRankalgorithm which can measure user influence depending on predicting user information communication ability. Comparedwith PageRank user influence model, the SRank algorithm user influence model gets better predicting results on user influence.So the new model is effective.

关 键 词:用户影响力 PAGERANK 社会计算 幂律分布 150定律 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TP393[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象