检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张力[1] 方秦[1] 张亚栋[1] 毛益明[2] 陈力[1] Zhang Li;Fang Qin;Zhang Yadong;Mao Yiming;Chen Li(College of Defense Engineering,PLA University of Science and Technology,Nanjing 210007,China;College of Field Engineering,PLA University of Science and Technology,Nanjing 210007,China)
机构地区:[1]解放军理工大学国防工程学院,南京210007 [2]解放军理工大学野战工程学院,南京210007
出 处:《天津大学学报(自然科学与工程技术版)》2016年第10期1071-1075,共5页Journal of Tianjin University:Science and Technology
基 金:国家重点基础研究发展计划(973计划)资助项目(2015CB058001)
摘 要:针对改进的光滑粒子方法(CSPM)在求解非连续流体动力学问题时出现解的非物理振荡的不足,基于一维不定常流理论和Riemann间断分解的思想,提出了一种改进的CSPM,提高了其解决间断问题时的精度,并减小了非物理振荡.该方法的可靠性以及适用范围得到了两组典型一维激波管算例的验证.计算结果表明,本文提出的方法在求解强间断的精度方面要优于传统的SPH方法,能有效消除间断面上的非物理振荡,在激波捕捉方面仍有较好的精度.In order to improve corrective smoothed particle method(CSPM)in solving the discontinuous phenomena of fluid dynamics,a new method named modified CSPM is proposed based on one-dimensional non-steady flow theory and Riemann solution.This new approach improves the CSPM’s deficiencies such as low-accuracy and unphysical vibration in solving the discontinuous phenomena.Moreover,two numerical cases of classical onedimensional shock tube are carried out to examine the performance of the new method.Results show that the new method functions well in solving strong discontinuous phenomena,and even in the situation that traditional SPH can’t work,the new method still can get satisfactory result in shock wave capturing.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249