检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡一帆[1] 胡友彬[1] 李骞[1] 耿冬冬 HU Yifan;HU Youbin;LI Qian;GENG Dongdong(College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101, China)
机构地区:[1]解放军理工大学气象海洋学院,南京211101
出 处:《计算机工程与应用》2016年第21期1-7,35,共8页Computer Engineering and Applications
基 金:国家自然科学基金青年科学基金项目(No.41305138)
摘 要:设计了一种基于视频监控的人脸检测跟踪识别系统,该系统的功能是检测并实时跟踪视频中的人脸图像,同时进行身份识别。针对Gentle Ada Boost算法构造的级联分类器检测效率偏低的问题,提出了一种递进复杂度的级联分类器。针对传统粒子滤波器最高权重粒子不准确的问题,提出了均值权重粒子滤波器。针对传统粒子滤波器样本衰退的问题,提出了一种同时结合人脸检测和人脸跟踪算法的跟踪校正策略。对于检测和跟踪到的人脸,利用基于Gabor变换和HMM的方法进行身份识别。实验结果表明,系统能够准确地检测并实时跟踪视频中的人脸,可以实现人脸的快速识别,是一种能够应用到视频监控系统中的有效方法。Based on video surveillance, this paper designs a kind of face detection, tracking recognition system, the function of which is detecting and tracking face image real-timely in video, at the same time for recognizing for the identity. The cascade classifier that Gentle AdaBoost algorithm constructs has a problem of low efficiency. To deal with that it proposes a cascade classifier in progressive complexity. In view of the highest weight particles of the traditional particle filter may not be accurate, the weight equal value of particle filter is proposed. Aiming at the sample recession problem of traditional particle filter, it puts forward a strategy of tracking correction that combines face detection and face tracking algorithm.The method based on Gabor transform and the HMM is used to identify the faces which are detected and tracked. The experiment results show that in the video, the system is capable of detecting the faces accurately and tracking them real-timely,it can also realize the fast recognition. It is an effective method that can be applied to the video surveillance system.
关 键 词:递进结构 均值权重 跟踪校正 GABOR特征 隐马尔可夫模型(HMM)
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.159.3