检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴明辉[1] 胡群威[1] 李辉[1] Wu Minghui;Hu Qunwei;Li Hui(Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China)
机构地区:[1]中国科学技术大学电子科学与技术系,安徽合肥230027
出 处:《计算机应用与软件》2016年第6期159-162,共4页Computer Applications and Software
摘 要:主要研究基于深度神经网络的话者确认方法。在训练阶段,以语音倒谱特征参数作为输入,说话人标签作为输出有监督的训练DNN;在话者注册阶段,从已训练的DNN最后一个隐藏层抽取与说话人相关的特征矢量,称为d-vector,作为话者模型;在测试阶段,从测试语音中抽取其d-vector与注册的话者模型相比较然后做出判决。实验结果表明,基于DNN的话者确认方法是可行的,并且在噪声环境及低的错误拒绝率的条件下,基于DNN的话者确认系统性能比i-vector基线系统性能更优。最后,将两个系统进行融合,融合后的系统相对于i-vector基线系统在干净语音和噪声语音条件下等误识率(EER)分别下降了13%和27%。In this paper we mainly investigate the method of using deep neural network ( DNN) for speaker verification. At the stage of training, the DNN is trained under supervision using the feature parameter of speech cepstrum as input and the label of speaker as output. At the stage of speaker registration, an eigenvector correlated to the speaker, namely d-vector, is extracted from the last hidden layer of the trained DNN and is used as the model of speaker. At test stage, from testing speech a d-vector is extracted to compare it with the model of the registered speaker and then to make the verification decision. Experimental results show that the DNN-based speaker verification method is feasible. Moreover, under the condition of noisy environment and low error-rejection rate, the DNN-based speaker verification system outperforms the i-vector base line system in performance. Finally, we integrate these two systems, relative to the i-vector base line system,the integrated system reduces the equal error rate (EER) by 1 3 % and 2 7 % for clean speech and noisy speck conditions respectively.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.199.9