一种基于信任度分簇处理协作感知算法  

Cooperative sensing algorithm of handling by clustering based on trust factor

在线阅读下载全文

作  者:罗钧[1] 何庆[1] Luo Jun;He Qing(College of Big Data & Information Engineering, Guizhou University, Guiyang 550025 , China)

机构地区:[1]贵州大学大数据与信息工程学院,贵阳550025

出  处:《计算机应用研究》2016年第10期3136-3138,共3页Application Research of Computers

基  金:贵州省科技厅资助项目(黔科合J字[2012]2171);贵州大学博士基金资助项目(贵大人基合字[2010]010)

摘  要:针对恶劣环境下能量感知算法感知性能差的问题,提出一种基于信任度分簇处理协作感知算法。在双门限能量检查算法基础上给出一种由采样信号均值、信噪比、采样信号相对误差组成的新信任度系数,并根据新信任度系数对双门限之间认知节点可靠性进行评定,并对需要优化的采样信号值修正后参与传统单门限能量感知得到本地感知结果;同时为不同可靠度认知节点对协作感知判决分配不同贡献,给出由采样信号方差和信噪比方差组成新权重值加权协作判决。实验仿真表明,该算法感知性能较传统双门限协作感知算法和信任度加权融合算法有一定改善。To the problem o f poor awareness o f energy aware algo rithm in poor e n viro n m e n t, th is paper proposed a cooperativesensing algo rithm o f h a n d lin g by clu ste rin g based on tru st factor. I t gave the new tru st factor o f the com position o f the sam plingsignal re la tive e rro r, S N R , average sam pling signal based on the do uble-thre shold energy sensing algo rithm . I t assessed the reliab ility o f cog nitive nodes o f the between high threshold and low threshold and corrected the sam pling signal o f needs to be optimized according to i t , w h ich p a rticip a te d in a tra d itio n a l single-threshold energy detection obtain local sensing results. M eanwh ile , to d istrib u te the d iffe re n t co n trib u tio n o f judgem ent collab ora tive fo r the d iffe re n t re lia b ility o f the sensing codes, it gavethe new w eight value by the com ponent o f sam pling signal variance and S N R and p a rticip a te in collab ora tion judg m en t w eighted.S im ulatio n results show th a t the im proved algo rithm has a certain im provem ent in perceived perform ance, com pared w iththe tra d itio n a l double-threshold cooperative sensing a lgo rithm and confidence w eighted fusion algorithm .

关 键 词:协作感知 信任度 分簇 信号相对误差 

分 类 号:TN925[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象