检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Rengui Li 李仁贵(中国科学院大连化学物理研究所洁净能源国家实验室(筹),辽宁大连1160232;中国科学院大连化学物理研究所催化基础国家重点实验室,辽宁大连116023)
机构地区:[1]Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China [2]State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
出 处:《Chinese Journal of Catalysis》2017年第1期5-12,共8页催化学报(英文)
基 金:supported by the National Basic Research Program of the Ministry of Science and Technology (973 Program, 2014CB239400);the National Natural Science Foundation of China (21501236, 21673230);Youth Innovation Promotion Association of Chinese Academy of Sciences (2016167)~~
摘 要:Hydrogen production via solar water splitting is regarded as one of the most promising ways to utilize solar energy and has attracted more and more attention. Great progress has been made on photocatalytic water splitting for hydrogen production in the past few years. This review summarizesthe very recent progress (mainly in the last 2–3 years) on three major types of solar hydrogenproduction systems: particulate photocatalysis (PC) systems, photoelectrochemical (PEC) systems,and photovoltaic‐photoelectrochemical (PV‐PEC) hybrid systems. The solar‐to‐hydrogen (STH)conversion efficiency of PC systems has recently exceeded 1.0% using a SrTiO3:La,Rh/Au/BiVO4:Mophotocatalyst, 2.5% for PEC water splitting on a tantalum nitride photoanode, and reached 22.4%for PV‐PEC water splitting using a multi‐junction GaInP/GaAs/Ge cell and Ni electrode hybrid system.The advantages and disadvantages of these systems for hydrogen production via solar watersplitting, especially for their potential demonstration and application in the future, are briefly describedand discussed. Finally, the challenges and opportunities for solar water splitting solutions are also forecasted.能源是人类生存和发展的物质基础,太阳能作为最丰富的清洁可再生能源之一,其开发利用受到了世界范围内的广泛关注.通过光催化分解水制氢将太阳能以化学能的形式储存起来不仅能利用太阳能制取高燃烧值的氢能,同时氢能可与CO_2综合利用结合起来,在减少碳排放的同时,生成高附加值的化学品,实现碳氢资源的优化利用.光催化分解水制氢在过去的几年里取得了长足的进步,本综述从三种研究广泛的太阳能光催化分解水制氢途径(即光催化、光电催化以及光伏-光电耦合途径)入手,分别简要介绍了太阳能分解水制氢在近几年取得的最新研究进展.利用纳米粒子悬浮体系进行光催化分解水制氢成本低廉、易于规模化放大,被认为是未来应用最可行的方式之一,但是太阳能转化利用效率还偏低.最新报道的SrTiO_3:La,Rh/Au/BiVO_4:Mo光催化剂其太阳能到氢能(STH)转化效率已超过了1.0%,相比之前报道的大多数光催化剂体系有了数量级的飞跃,让人们对太阳能光催化分解水制氢未来的规模化应用看到了希望.高效宽光谱响应的光催化剂、高效电荷分离策略、新型高效助催化剂以及气体分离新方法和新材料等,均是粉末光催化剂体系研究最为关键的问题;光电催化分解水在过去2–3年内发展迅速,在一些典型的光阳极半导体材料(如BiVO_4和Ta_3N_5等)体系上太阳能利用效率超过2.0%以上.最新研究发现,在Ta_3N_5光阳极的研究中,通过在光电极表面合理设计和构筑空穴传输层和电子阻挡层等策略,光电流和电极稳定性均可得到大幅度提升,光电流大小甚至可接近Ta3N5材料的理论极限电流.如果能进一步在过电位和电极稳定性上取得突破,该体系的STH转化效率还会得到大幅度改进.此外,光阴极的研究也越来越受到了研究者的关注;光伏-光电耦合体系在三种途径里面太阳能制氢效率最高,在
关 键 词:Solar energy utilization PHOTOCATALYSIS Water splitting for hydrogen production Charge separation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3