基于改进恢复算法的双选稀疏信道估计  

Double Selective Sparse Channel Estimation Based on the Optimized Recovery Algorithm

在线阅读下载全文

作  者:马秀荣[1] 陈冰雪[1] 单云龙[1] MA Xiu-rong;CHEN Bing-xue;SHAN Yun-long

机构地区:[1]天津理工大学计算机与通信工程学院,天津市薄膜电子与通信器件重点实验室,天津300384

出  处:《科学技术与工程》2016年第29期241-246,共6页Science Technology and Engineering

摘  要:高速移动情况下,正交频分复用系统(orthogonal frequency division multiplexing,OFDM)无线通信信道可建模为时间-频率双选信道,其响应在时延-多普勒域呈现稀疏性,使压缩感知技术得以应用到稀疏信道估计中。当稀疏度提高时,压缩感知(compressed sensing,CS)中正则化正交匹配追踪恢复算法(regularized orthogonal matching pursuit,ROMP)的复杂度增大。提出了有严格计算约束的改进恢复算法,该算法每次迭代选择固定数目的原子使支撑集为非奇异矩阵来降低原子选择和最小二乘(least squares,LS)法计算上的复杂度,并且每次迭代更新支撑集来保证精度。仿真结果表明,和ROMP算法比较,改进恢复算法的运行时间明显降低,并且在一定的迭代次数下精确度得以保证。The wireless communication channels within orthogonal frequency-division multiplexing systems could be modeled as time-frequency doubly selective channels introduced by high mobility. The application of compressed sensing is considered as the sparse channel estimation because of its sparsity on delay-doppler domain. The complexity of Regularized Orthogonal Matching Pursuit( ROMP) recovery algorithm increases with higher sparsity. To educe the complexity of atom selection and solving least squares problem in ROMP, an optimized recovery algorithmwith a rigorous computational bound is proposed, which identifies a fixed number of atoms to make the recoverysubmatrix be a nonsingular matrix. In addition, the recovery submatrix is renewed at the end of each iteration to improve the precision. Simulation results demonstrate that compared with ROMP algorithm, elapsed time in the optimized recovery algorithm is decreased evidently and the accuracy could be ensured with proper iteration times.

关 键 词:正交频分复用 压缩感知 信道估计 双选信道 恢复算法 正则化正交匹配追踪 

分 类 号:TN91[电子电信—通信与信息系统] TN92[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象