检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李金娜[1,2] 高溪泽 柴天佑[2] 范家璐 LI Jin-na;GAO Xi-ze;CHAI Tian-you;FAN Jia-lu(College of Information Engineering, Shenyang University of Chemical Technology, Shenyang Liaoning 110142, China;State Key Lab of Synthetical Automation for Process Industries, Northeastern University, Shenyang Liaoning 110819, China)
机构地区:[1]沈阳化工大学信息工程学院,辽宁沈阳110142 [2]东北大学流程工业综合自动化国家重点实验室,辽宁沈阳110819
出 处:《控制理论与应用》2016年第12期1584-1592,共9页Control Theory & Applications
基 金:国家自然科学基金项目(61673280;61104093;61525302;61333012;61304028;61590922;61503257);流程工业综合自动化国家重点实验室开放课题(PAL–N201603);辽宁省高等学校杰出青年学者成长计划(LJQ2015088);辽宁省自然科学基金项目(2015020164;2014020138)资助~~
摘 要:现代工业过程机理复杂使得很难对生产过程以及运行指标与被控变量之间关系精确建模.如何基于工业运行过程数据信息,不依赖模型参数给出设定值设计方案,优化运行指标是一挑战性难题.本文针对在稳态附近可以线性化的一类工业过程,考虑运行控制环和底层控制环不同时间尺度,提出一种基于Q--学习方法的次优设定值学习算法.此算法完全利用数据,学习得到次优设定值,实现运行指标以次优的方式跟踪理想值.浮选过程仿真结果表明本文所提方法的有效性.It is difficult to accurately model productive processes and describe relationship between operational indices and controlled variables for modern industrial processes. How to design the setpoints by using only data generated by operational processes for optimizing operational indices, without requiring the knowledge of model parameters of operational processes, poses a challenge on operational optimization control. This paper focuses on a class of industrial processes that can be linearized near the steady states and take different time scales adopted in the operational control loop and process control loop into account. In this context, a Q--learning based suboptimal setpoint learning algorithm is proposed to learn suboptimal setpoints by utilizing only data, such that the operational indices can track the desired values in an suboptimal manner. A simulation experiment in flotation process is implemented to show the effectiveness of the proposed method.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249