高炉透气性指数的改进多层超限学习机预测模型  被引量:8

Prediction model of improved multi-layer extreme learning machine for permeability index of blast furnace

在线阅读下载全文

作  者:苏晓莉[1,2] 尹怡欣[1,2] 张森[1,2] SU Xiao-li;YIN Yi-xin;ZHANG Sen(School of Automation, University of Science and Technology Beijing, Beijing 100083, China;Key Laboratory of Advanced Control of Iron and Steel Process (Ministry of Education University of Science and Technology Beijing, Beijing 100083, China)

机构地区:[1]北京科技大学自动化学院,北京100083 [2]北京科技大学钢铁流程先进控制教育部重点实验室,北京100083

出  处:《控制理论与应用》2016年第12期1674-1684,共11页Control Theory & Applications

基  金:国家自然科学基金重点项目(61333002);国家自然科学基金项目(61673056)资助~~

摘  要:高炉透气性指数是高炉操作者衡量高炉顺行状态的指标之一.针对传统透气性指数测量模型的缺陷,本文提出了一种基于改进的多层超限学习机(multi-layer extreme learning machine,ML–ELM)的高炉透气性指数预测模型.首先分析影响高炉透气性指数的相关操作参数,考虑到高炉生产数据含有大量噪声,运用小波去噪方法消除数据的噪声干扰.然后建立高炉透气性指数预测模型.在建模过程中,将偏最小二乘(partial least square,PLS)与多层超限学习机算法结合,消除多层超限学习机最后一层隐藏层的多重共线性,提高了模型预测精度.并且所提出的改进算法称为PLS–ML–ELM.最后使用现场生产数据对该模型训练和测试,预测结果表明所提出模型能够快速、精确地预测高炉透气性指数,并且为高炉的后续操作提供有效的决策与支持.Permeability index of blast furnace is one of significant indicators of measuring the anterograde state of blast furnace for operators. Aiming at the defects of traditional permeability index measurement model, this paper proposes a prediction model for permeability index based on improved multi-layer extreme learning machine algorithm (ML–ELM).Firstly, relevant operation parameters are chosen through analyzing the mechanism of blast furnace. Given to blast furnace production data contain noise, wavelet transform is adopted to get rid of interference. Secondly, the prediction model of permeability index is established. Multi-layer extreme learning machine and partial least square method (PLS) are combined to overcome output matrix multicollinearity of the last hidden layer for ML–ELM and prediction accuracy is improved. And the improved algorithm is named as PLS–ML–ELM. Finally, practical production data are used to train and test this model. Simulation results indicate that the model can quickly and accurately predict permeability index and can offer efficient decision for sequent blast furnace operation.

关 键 词:高炉 透气性指数 建模 多层超限学习机 预测 

分 类 号:TF54[冶金工程—钢铁冶金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象