检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李腾宇[1] 易晓梅[1] 陈石[1] LI Tengyu;YI Xiaomei;CHEN Shi(School of Information Engineering, Zhejiang A & F University, Hangzhou 311300, China)
出 处:《计算机工程与应用》2017年第6期118-121,134,共5页Computer Engineering and Applications
基 金:国家自然科学基金重大项目(No.61190114)
摘 要:针对无线传感器网络节点在自身定位中广泛存在较大的定位误差的问题,提出一种基于RSSI加权质心和GASA优化的无线传感器网络定位算法。该算法假设无线传感器网络中存在一定比例的位置已知的锚节点,利用RSSI加权质心算法计算未知节点与锚节点间的距离,建立以未知节点位置为参数的数学模型,用GASA优化算法计算最优解从而获得未知节点的位置,实现未知节点自身的定位。仿真实验的结果表明,当锚节点个数为30,算法的平均定位误差在10%以内,比RSSI加权质心算法降低了10%~15.5%左右,并且随着节点个数的增加平均定位误差降低。This paper proposes a wireless sensor networks localization algorithm which is based on the weighted centroid RSSI and GASA optimization to improve the situation of node localization in wireless sensor network where the positioning error problems frequently occur. In order to locate the own position of unknown nodes, it is assumed that there is a certain proportion of the known position of the anchor nodes in wireless sensor networks. Since, the distance between unknown nodes and anchor nodes can be calculated out by RSSI weighted centroid algorithm, an unknown location parameter mathematical model can be established. Then, the most optimal solution to obtain a position of unknown nodes is achieved with the help of GASA optimization algorithm. The simulation results show that when the number of anchor nodes is 30,the average positioning error of this algorithm is fewer than 10%, which is lower than that of RSSI weighted centroid algorithm which is about 20%~25.5%. In addition, the more nodes are, the less positioning errors are.
关 键 词:无线传感器网络 节点定位 接收的信号强度指示(RSSI)加权质心测距 遗传模拟退火(GASA)优化算法
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117