Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat  被引量:21

Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat

在线阅读下载全文

作  者:Yuping Li Hongbing Li Yuanyuan Li Suiqi Zhang 

机构地区:[1]State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University [2]State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources

出  处:《The Crop Journal》2017年第3期231-239,共9页作物学报(英文版)

基  金:supported by the National Key Technology R&D Program of China (2015BAD22B01);the Plan 111 of the Ministry of Education (B12007);the National Natural Science Foundation of China (31500320);Special Funds of Scientific Research Programs of State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau (A314021403-C5)

摘  要:In wheat, the ear is one of the main photosynthetic contributors to grain filling under drought stress conditions. In order to determine the relationship between stomatal characteristics and plant drought resistance, photosynthetic and stomatal characteristics and water use efficiency(WUE) were studied in two wheat cultivars: the drought-resistant cultivar ‘Changhan 58' and the drought-sensitive cultivar ‘Xinong 9871'. Plants of both cultivars were grown in pot conditions under well-watered(WW) and water-stressed(WS) conditions. In both water regimes,‘Changhan 58' showed a significantly higher ear photosynthetic rate with a lower rate of variation and a significantly higher percentage variation of transpiration compared to control plants at the heading stage under WS conditions than did ‘Xinong 9871' plants. Moreover,‘Changhan 58' showed lower stomatal density(SD) and higher stomatal area per unit organ area(A) under both water conditions. Water stress decreased SD, A, and stomatal width(SW), and increased stomatal length in flag leaves(upper and lower surfaces) and ear organs(awn, glume,lemma, and palea), with the changes more pronounced in ear organs than in flag leaves.Instantaneous WUE increased slightly, while integral WUE improved significantly in both cultivars. Integral WUE was higher in ‘Changhan 58', and increased by a greater amount, than in‘Xinong 9871'. These results suggest that drought resistance in ‘Changhan 58' is regulated by stomatal characteristics through a decrease in transpiration rate in order to improve integral WUE and photosynthetic performance, and through sustaining a higher ear photosynthetic rate, therefore enhancing overall drought-resistance.In wheat, the ear is one of the main photosynthetic contributors to grain filling under drought stress conditions. In order to determine the relationship between stomatal characteristics and plant drought resistance, photosynthetic and stomatal characteristics and water use efficiency(WUE) were studied in two wheat cultivars: the drought-resistant cultivar ‘Changhan 58' and the drought-sensitive cultivar ‘Xinong 9871'. Plants of both cultivars were grown in pot conditions under well-watered(WW) and water-stressed(WS) conditions. In both water regimes,‘Changhan 58' showed a significantly higher ear photosynthetic rate with a lower rate of variation and a significantly higher percentage variation of transpiration compared to control plants at the heading stage under WS conditions than did ‘Xinong 9871' plants. Moreover,‘Changhan 58' showed lower stomatal density(SD) and higher stomatal area per unit organ area(A) under both water conditions. Water stress decreased SD, A, and stomatal width(SW), and increased stomatal length in flag leaves(upper and lower surfaces) and ear organs(awn, glume,lemma, and palea), with the changes more pronounced in ear organs than in flag leaves.Instantaneous WUE increased slightly, while integral WUE improved significantly in both cultivars. Integral WUE was higher in ‘Changhan 58', and increased by a greater amount, than in‘Xinong 9871'. These results suggest that drought resistance in ‘Changhan 58' is regulated by stomatal characteristics through a decrease in transpiration rate in order to improve integral WUE and photosynthetic performance, and through sustaining a higher ear photosynthetic rate, therefore enhancing overall drought-resistance.

关 键 词:WHEAT STOMATAL structure EAR photosynthesis DROUGHT resistance Water use efficiency 

分 类 号:S512.1[农业科学—作物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象