Evaluation of maize inbred lines for resistance to pre-harvest aflatoxin and fumonisin contamination in the field  被引量:1

Evaluation of maize inbred lines for resistance to pre-harvest aflatoxin and fumonisin contamination in the field

在线阅读下载全文

作  者:Baozhu Guo Xiangyun Ji Xinzhi Ni Jake C.Fountain Hong Li Hamed K.Abbas Robert D.Lee Brian T.Scully 

机构地区:[1]United States Department of Agriculture-Agricultural Research Service(USDA-ARS),Crop Protection and Management Research Unit,Tifton,GA,United States [2]The University of Georgia,Department of Plant Pathology,Tifton,GA,United States [3]Ecological Environment Protection Research Institute,Shanghai Academy of Agricultural Sciences,Shanghai,China [4]USDA-ARS,Crop Genetics and Breeding Research Unit,Tifton,GA,United States [5]Shanxi Academy of Agricultural Sciences,Millet Research Institute,Changzhi,China [6]USDA-ARS,Biological Control of Pests Research Unit,Stoneville,MS,United States [7]The University of Georgia,Department of Crop and Soil Sciences,Tifton,GA,United States [8]USDA-ARS,U.S.Horticultural Research Laboratory,Fort Pierce,FL,United States

出  处:《The Crop Journal》2017年第3期259-264,共6页作物学报(英文版)

基  金:partially supported by the U.S.Department of Agriculture-Agricultural Research Service(USDA-ARS);the Georgia Agricultural Commodity Commission for Corn;the National Corn Growers Association;AMCOE(Aflatoxin Mitigation Center of Excellence)

摘  要:Two important mycotoxins, aflatoxin and fumonisin, are among the most potent naturally occurring carcinogens, contaminating maize(Zea mays) and affecting crop yield and quality.Resistance of maize to pre-harvest mycotoxin contamination, specifically aflatoxin produced by Aspergillus flavus and fumonisin produced by Fusarium verticillioides, is a goal in breeding programs that screen for these important traits with the aim of developing resistant commercial hybrids. We conducted two years of field evaluations on 87 inbred lines originating primarily in China and Mexico and not previously screened for resistance.The objectives of our study were to identify resistant germplasm for breeding purposes and to examine possible relationships between resistances to the two mycotoxins. Aflatoxin and fumonisin were present in samples harvested from all lines in both years.Concentrations of total aflatoxin ranged from 52.00 ± 20.00 to 1524.00 ± 396.00 μg kg^(-1),while those of fumonisin ranged from 0.60 ± 0.06 to 124.00 ± 19.50 mg kg^(-1). The inbred lines TUN15, TUN61, TUN37, CY2, and TUN49 showed the lowest aflatoxin accumulation and CN1, GT601, TUN09, TUN61, and MP717 the lowest fumonisin accumulation. TUN61 showed the lowest accumulation of both mycotoxins. This study confirmed previous observations that high levels of aflatoxin can coexist with fumonisin, with 55 maize lines showing a positive correlation coefficient between the concentrations of aflatoxin and fumonisin and 32 lines showing a negative correlation coefficient. These selected lines,particularly TUN61, may provide sources of resistance to mycotoxin contamination in breeding programs. However, the mechanism of resistance in this germplasm remains to be identified. Future research should also address factors that influence the fungus–plant interaction, such as herbivory and environmental stress.Two important mycotoxins, aflatoxin and fumonisin, are among the most potent naturally occurring carcinogens, contaminating maize(Zea mays) and affecting crop yield and quality.Resistance of maize to pre-harvest mycotoxin contamination, specifically aflatoxin produced by Aspergillus flavus and fumonisin produced by Fusarium verticillioides, is a goal in breeding programs that screen for these important traits with the aim of developing resistant commercial hybrids. We conducted two years of field evaluations on 87 inbred lines originating primarily in China and Mexico and not previously screened for resistance.The objectives of our study were to identify resistant germplasm for breeding purposes and to examine possible relationships between resistances to the two mycotoxins. Aflatoxin and fumonisin were present in samples harvested from all lines in both years.Concentrations of total aflatoxin ranged from 52.00 ± 20.00 to 1524.00 ± 396.00 μg kg^(-1),while those of fumonisin ranged from 0.60 ± 0.06 to 124.00 ± 19.50 mg kg^(-1). The inbred lines TUN15, TUN61, TUN37, CY2, and TUN49 showed the lowest aflatoxin accumulation and CN1, GT601, TUN09, TUN61, and MP717 the lowest fumonisin accumulation. TUN61 showed the lowest accumulation of both mycotoxins. This study confirmed previous observations that high levels of aflatoxin can coexist with fumonisin, with 55 maize lines showing a positive correlation coefficient between the concentrations of aflatoxin and fumonisin and 32 lines showing a negative correlation coefficient. These selected lines,particularly TUN61, may provide sources of resistance to mycotoxin contamination in breeding programs. However, the mechanism of resistance in this germplasm remains to be identified. Future research should also address factors that influence the fungus–plant interaction, such as herbivory and environmental stress.

关 键 词:AFLATOXIN FUMONISIN Inbredline MAIZE MYCOTOXIN 

分 类 号:S435.13[农业科学—农业昆虫与害虫防治]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象