基于音位的网络盗版文本查重方法  

Method for Checking Duplicate Text of Network Piracy Based on Phoneme

在线阅读下载全文

作  者:金哲凡[1] 俞定国[1] 林生佑[1] 周忠成[1] JIN Zhe-fan;YU Ding-guo;LIN Sheng-you;ZHOU Zhong-cheng(Zhejiang University of Media and Communications, Hangzhou 310018, China)

机构地区:[1]浙江传媒学院,浙江杭州310018

出  处:《山东农业大学学报(自然科学版)》2017年第3期467-471,共5页Journal of Shandong Agricultural University:Natural Science Edition

基  金:浙江省公益技术应用研究项目(2016C33196);浙江省公益性技术应用研究项目(2017C33105)

摘  要:传统的文本查重算法是对文本作分词以构建关键词向量,而对于某些特殊应用的网络盗版检测,分词的开销则未必合理和必要。因此,本文提出一种基于汉语音位信息的文本查重方法。文本被表达为声、韵、调三个空间向量,以余弦距离作相似性度量。提出两种相似性判断公式,一种假定三向量独立分布;一种取其线性组合,系数可由音位元素的信息熵算出,通过大文本统计得出信息熵的估计值,以传统的关键词向量/Sim Hash方法做参照产生语料,对其作统计得到模型参数。实验结果表明该方法有一定的精确率和很好的召回率,计算开销低于传统的方法,适合需要过滤大量TN类型文本的场合。The traditional method checking repetition takes a text as a participle to establish some key vectors,however the piratical cost may not be reasonable or necessary for the discovery of the online copyright violation in some special APP.Therefore this paper proposed a method checking repetition with Chinese phonology.A text was represented by three vectors in spaces of Chinese initial,final and tone and cosine distance was used as a measurement of similarity.Two decision models were proposed.One assumed the three vectors were independent each other,while the other took a linear combination of the three,which needed to calculate the factors using information entropies that could be evaluated by large-corpus counting.Training corpus was generated with the old term-vector/SimHash method being used as a standard and threshold values were calculated.Test results showed the proposed method had a good precision and a very good recall ratio,and computational cost was lowed comparing to traditional methods based on term vectors to be suitable for filtering out a large amount of TN documents.

关 键 词:音位 盗版文本 查重 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象