检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李雷[1,2] 徐盼盼[1,2] 王文成[1,2] Li Lei;Xu Panpan;Wang Wencheng
机构地区:[1]中国科学院软件研究所计算机科学国家重点实验室,北京100190 [2]中国科学院大学,北京100049
出 处:《计算机辅助设计与图形学学报》2017年第7期1195-1202,共8页Journal of Computer-Aided Design & Computer Graphics
基 金:国家自然科学基金(78097316);中国科学院知识创新工程领域前沿项目
摘 要:针对已有的曲线骨架提取方法获得的曲线骨架不太简洁,且关节点过多,难以有效反映模型拓扑结构的问题,提出一种曲线骨架提取方法.首先运用经典的集合覆盖问题模型对中值面进行优化处理,减少模型细节的干扰,形成中值图,以更简洁且规整地表达模型;然后以收缩的方式根据中值图生成曲线骨架,得到有效地反映模型拓扑结构的简洁的骨架形态.由于中值图的数据规模远小于中值面,文中方法的计算效率很高.实验结果表明,相比于已有方法,该方法提高了曲线骨架的生成质量,且计算速度有明显提高,甚至可提高3个数量级.For curve-skeleton extraction,many methods firstly extract medial surfaces of3D shapes,and thengenerate curve-skeletons from medial surfaces.Due to the details of shapes,medial surfaces are rugged in general.Hence,the obtained curve-skeletons are often rough,very possibly containing too many junction points than required,failing to represent the topology of3D shapes concisely.In this paper,we present a novel method that isalso based on medial surfaces.It employs the classical(set cover problem)SCP model to optimize the medialsurfaces for reducing the interference from shape details,generating a compact and neat representation for a3Dshape,called a medial graph.Afterwards,medial graphs are used instead of medial surfaces for extracting curveskeletons,according to the contraction strategy in our current implementation.As a result,the obtainedcurve-skeleton is clean and compact,with suitable junction points to well represent the topological structures of3D shapes.Another benefit is that our method can run much faster,because the medial graphs are very small insize.Experimental results show that our method can improve skeleton quality,compared to existing methods,andrun much faster than them,even by three orders of magnitude.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.122.53