机构地区:[1]State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Nanjing Hydraulic Research Institute [2]Research Center for Climate Change,Ministry of Water Resources [3]Institute of Hydrology and Water Resources,Civil Engineering,Zhejiang University [4]College of Hydrology and Water Resources,Hohai University
出 处:《Water Science and Engineering》2017年第2期87-96,共10页水科学与水工程(英文版)
基 金:supported by the National Natural Science Foundation of China(Grants No.41330854 and 41371063);the National Key Research and Development Programs of China(Grants No.2016YFA0601601 and2016YFA0601501)
摘 要:Variation trends of water resources in the Xiangjiang River Basin over the coming decades have been investigated using the variable infiltration capacity(VIC) model and 14 general circulation models'(GCMs') projections under the representative concentration pathway(RCP4.5) scenario. Results show that the Xiangjiang River Basin will probably experience temperature rises during the period from 2021 to2050, with precipitation decrease in the 2020 s and increase in the 2030 s. The VIC model performs well for monthly discharge simulations with better performance for hydrometric stations on the main stream of the Xiangjiang River than for tributary catchments. The simulated annual discharges are significantly correlated to the recorded annual discharges for all the eight selected target stations. The Xiangjiang River Basin may experience water shortages induced by climate change. Annual water resources of the Xiangjiang River Basin over the period from 2021 to 2050 are projected to decrease by 2.76% on average within the range from-7.81% to 7.40%. It is essential to consider the potential impact of climate change on water resources in future planning for sustainable utilization of water resources.Variation trends of water resources in the Xiangjiang River Basin over the coming decades have been investigated using the variable infiltration capacity(VIC) model and 14 general circulation models'(GCMs') projections under the representative concentration pathway(RCP4.5) scenario. Results show that the Xiangjiang River Basin will probably experience temperature rises during the period from 2021 to2050, with precipitation decrease in the 2020 s and increase in the 2030 s. The VIC model performs well for monthly discharge simulations with better performance for hydrometric stations on the main stream of the Xiangjiang River than for tributary catchments. The simulated annual discharges are significantly correlated to the recorded annual discharges for all the eight selected target stations. The Xiangjiang River Basin may experience water shortages induced by climate change. Annual water resources of the Xiangjiang River Basin over the period from 2021 to 2050 are projected to decrease by 2.76% on average within the range from-7.81% to 7.40%. It is essential to consider the potential impact of climate change on water resources in future planning for sustainable utilization of water resources.
关 键 词:Water RESOURCES CLIMATE CHANGE VIC model Xiangjiang RIVER BASIN CLIMATE scenarios HYDROLOGICAL modeling
分 类 号:TV213.4[水利工程—水文学及水资源]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...