机构地区:[1]Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Science [2]Graduate School of the Chinese Academy of Science [3]Key Laboratory of Airborne Optical Imaging and Measurement,Chinese Academy of Science
出 处:《Journal of Harbin Institute of Technology(New Series)》2017年第4期71-77,共7页哈尔滨工业大学学报(英文版)
基 金:Sponsored by the National Natural Science Foundation of China(Grant No.60902067);the Foundation for Science & Technology Research Project of Jilin Province(Grant No.11ZDGG001)
摘 要:Due to the electronic rolling shutter, high-speed Complementary Metal-Oxide Semiconductor( CMOS) aerial cameras are generally subject to geometric distortions,which cannot be perfectly corrected by conventional vision-based algorithms. In this paper we propose a novel approach to address the problem of rolling shutter distortion in aerial imaging. A mathematical model is established by the coordinate transformation method. It can directly calculate the pixel distortion when an aerial camera is imaging at arbitrary gesture angles.Then all pixel distortions form a distortion map over the whole CMOS array and the map is exploited in the image rectification process incorporating reverse projection. The error analysis indicates that within the margin of measuring errors,the final calculation error of our model is less than 1/2 pixel. The experimental results show that our approach yields good rectification performance in a series of images with different distortions. We demonstrate that our method outperforms other vision-based algorithms in terms of the computational complexity,which makes it more suitable for aerial real-time imaging.Due to the electronic rolling shutter, high-speed Complementary Metal-Oxide Semiconductor( CMOS) aerial cameras are generally subject to geometric distortions,which cannot be perfectly corrected by conventional vision-based algorithms. In this paper we propose a novel approach to address the problem of rolling shutter distortion in aerial imaging. A mathematical model is established by the coordinate transformation method. It can directly calculate the pixel distortion when an aerial camera is imaging at arbitrary gesture angles.Then all pixel distortions form a distortion map over the whole CMOS array and the map is exploited in the image rectification process incorporating reverse projection. The error analysis indicates that within the margin of measuring errors,the final calculation error of our model is less than 1/2 pixel. The experimental results show that our approach yields good rectification performance in a series of images with different distortions. We demonstrate that our method outperforms other vision-based algorithms in terms of the computational complexity,which makes it more suitable for aerial real-time imaging.
关 键 词:aerial camera CMOS sensor ROLLING SHUTTER effect COORDINATE transformation image RECTIFICATION
分 类 号:V248.1[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...