Self-normalization:Taming a wild population in a heavy-tailed world  被引量:2

Self-normalization:Taming a wild population in a heavy-tailed world

在线阅读下载全文

作  者:SHAO Qi-man ZHOU Wen-xin 

机构地区:[1]Department of Statistics, The Chinese University of Hong Kong [2]Department of Mathematics, University of California

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2017年第3期253-269,共17页高校应用数学学报(英文版)(B辑)

基  金:Supported by Hong Kong RGC GRF 14302515

摘  要:The past two decades have witnessed the active development of a rich probability theory of Studentized statistics or self-normalized processes, typified by Student’s t-statistic as introduced by W. S. Gosset more than a century ago, and their applications to statistical problems in high dimensions, including feature selection and ranking, large-scale multiple testing and sparse, high dimensional signal detection. Many of these applications rely on the robustness property of Studentization/self-normalization against heavy-tailed sampling distributions. This paper gives an overview of the salient progress of self-normalized limit theory, from Student’s t-statistic to more general Studentized nonlinear statistics. Prototypical examples include Studentized one- and two-sample U-statistics. Furthermore, we go beyond independence and glimpse some very recent advances in self-normalized moderate deviations under dependence.The past two decades have witnessed the active development of a rich probability theory of Studentized statistics or self-normalized processes, typified by Student’s t-statistic as introduced by W. S. Gosset more than a century ago, and their applications to statistical problems in high dimensions, including feature selection and ranking, large-scale multiple testing and sparse, high dimensional signal detection. Many of these applications rely on the robustness property of Studentization/self-normalization against heavy-tailed sampling distributions. This paper gives an overview of the salient progress of self-normalized limit theory, from Student’s t-statistic to more general Studentized nonlinear statistics. Prototypical examples include Studentized one- and two-sample U-statistics. Furthermore, we go beyond independence and glimpse some very recent advances in self-normalized moderate deviations under dependence.

关 键 词:Berry-Esseen inequality Hotelling’s T 2-statistic large deviation moderate deviation SELF-NORMALIZATION Student’s t-statistic U-STATISTIC 

分 类 号:O21[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象