检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Statistics, The Chinese University of Hong Kong [2]Department of Mathematics, University of California
出 处:《Applied Mathematics(A Journal of Chinese Universities)》2017年第3期253-269,共17页高校应用数学学报(英文版)(B辑)
基 金:Supported by Hong Kong RGC GRF 14302515
摘 要:The past two decades have witnessed the active development of a rich probability theory of Studentized statistics or self-normalized processes, typified by Student’s t-statistic as introduced by W. S. Gosset more than a century ago, and their applications to statistical problems in high dimensions, including feature selection and ranking, large-scale multiple testing and sparse, high dimensional signal detection. Many of these applications rely on the robustness property of Studentization/self-normalization against heavy-tailed sampling distributions. This paper gives an overview of the salient progress of self-normalized limit theory, from Student’s t-statistic to more general Studentized nonlinear statistics. Prototypical examples include Studentized one- and two-sample U-statistics. Furthermore, we go beyond independence and glimpse some very recent advances in self-normalized moderate deviations under dependence.The past two decades have witnessed the active development of a rich probability theory of Studentized statistics or self-normalized processes, typified by Student’s t-statistic as introduced by W. S. Gosset more than a century ago, and their applications to statistical problems in high dimensions, including feature selection and ranking, large-scale multiple testing and sparse, high dimensional signal detection. Many of these applications rely on the robustness property of Studentization/self-normalization against heavy-tailed sampling distributions. This paper gives an overview of the salient progress of self-normalized limit theory, from Student’s t-statistic to more general Studentized nonlinear statistics. Prototypical examples include Studentized one- and two-sample U-statistics. Furthermore, we go beyond independence and glimpse some very recent advances in self-normalized moderate deviations under dependence.
关 键 词:Berry-Esseen inequality Hotelling’s T 2-statistic large deviation moderate deviation SELF-NORMALIZATION Student’s t-statistic U-STATISTIC
分 类 号:O21[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.239.73