On fundamental solution for powers of the sub-Laplacian on the Heisenberg group  被引量:1

On fundamental solution for powers of the sub-Laplacian on the Heisenberg group

在线阅读下载全文

作  者:WANG Hai-meng WU Qing-yan 

机构地区:[1]School of Mathematics and Information Technology, Jiangsu Second Normal University [2]School of Science, Linyi University

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2017年第3期365-378,共14页高校应用数学学报(英文版)(B辑)

基  金:Supported by Doctor Special Foundation of Jiangsu Second Normal University(JSNU2015BZ07)

摘  要:We discuss the fundamental solution for m-th powers of the sub-Laplacian on the Heisenberg group. We use the representation theory of the Heisenberg group to analyze the associated m-th powers of the sub-Laplacian and to construct its fundamental solution. Besides, the series representation of the fundamental solution for square of the sub-Laplacian on the Heisenberg group is given and we also get the closed form of the fundamental solution for square of the sub-Laplacian on the Heisenberg group with dimension n = 2, 3, 4.We discuss the fundamental solution for m-th powers of the sub-Laplacian on the Heisenberg group. We use the representation theory of the Heisenberg group to analyze the associated m-th powers of the sub-Laplacian and to construct its fundamental solution. Besides, the series representation of the fundamental solution for square of the sub-Laplacian on the Heisenberg group is given and we also get the closed form of the fundamental solution for square of the sub-Laplacian on the Heisenberg group with dimension n = 2, 3, 4.

关 键 词:SUB-LAPLACIAN fundamental solution group Fourier transform Plancherel formula Heisenberg group 

分 类 号:O177[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象