基于稀疏系数位置特征的LFM雷达信源个数估计算法  

LFM Radar Source Number Estimation Based on Location of Sparse Coefficient

在线阅读下载全文

作  者:秦国领 秦福蝶 吴小东[1] 赵帆[1] 王浩铭 Qin Guoling;Qin Fudie;Wu Xiaodong;Zhao Fan;Wang Haoming(Jiuquan Satellite Launch Center, Jiuquan 732750, China;Mathematics and Physics Academy of Anhui Jianzhu University, Hefei 230000, China;Academy of Armored Force Technology, Changchun 110300, China)

机构地区:[1]酒泉卫星发射中心,酒泉732750 [2]安徽建筑大学数理学院,合肥230000 [3]装甲兵技术学院,长春110300

出  处:《遥测遥控》2017年第4期26-31,共6页Journal of Telemetry,Tracking and Command

摘  要:信源个数估计是多信源信号处理的基础,对后续信号的捕获分析关系重大。依据稀疏系数在不同测量矩阵、相同稀疏字典下位置信息相同的特点,提出一种新的信源个数估计算法,突破了传统算法最优门限阈值随信噪比变化的桎梏,实现了信源个数的准确估计。仿真结果表明,算法在保证估计性能的同时降低了运算复杂度。Source number estimation is the base of multi-source signals process,which is very important to the subsequence signal capture and analysis.Based on the characteristic that the location information is same on the conditions of different measurement matrixes and same sparse dictionary,a new source number estimation method is proposed,which breaks through the shackle that the optimal thresholds of traditional algorithms vary with the SNR and realizes the accurate estimation of source number.Simulation results show that the proposed method ensures the estimation performance with less calculation complexity.

关 键 词:稀疏系数位置 压缩感知 信源个数估计 

分 类 号:TN971.1[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象