检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张荣光[1] 胡晓辉[1] 宗永胜 ZHANG Rongguang;HU Xiaohui;ZONG Yongsheng(School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)
机构地区:[1]兰州交通大学电子与信息工程学院,兰州730070
出 处:《计算机工程与应用》2017年第18期108-114,235,共8页Computer Engineering and Applications
基 金:国家自然科学基金(No.61163009);甘肃省科技支撑计划项目(No.144NKCA040)
摘 要:为了解决数据挖掘和机器学习领域中连续属性离散化问题,提出一种改进的自适应离散粒子群优化算法。将连续属性的断点集合作为离散粒子群,通过粒子间的相互作用最小化断点子集,同时引入模拟退火算法作为局部搜索策略,提高了粒子群的多样性和寻找全局最优解的能力。利用粗糙集理论中决策属性对条件属性的依赖度来衡量决策表的一致性,从而达到连续属性离散化的目的,最后采用多组数据对此算法的性能进行了检验,并与其他算法做了对比实验,实验结果表明此算法是有效的。In order to solve the problem of data mining and the discretization of continuous attributes in the field of machinelearning,an improved adaptive discrete particle swarm optimization algorithm is proposed.This method treats thediscrete particle swarm as a breakpoint set of continuous attributes.It also minimizes breakpoint subset through the interactionof particles,combined with simulated annealing algorithm as a partial search strategy for particles,enriching theparticle swarm and enhancing the ability to look for the whole optimal solution.In addition,the consistency of decisiontable is measured according to the dependence of decision attribute in the rough set theory on condition attribute,achievingthe goal of continuous attributes discretization.Finally the performance of this algorithm is tested through multiplesets of data and compared with other algorithms through experiments.As the results show,this algorithm is effective.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.134.81.178