机构地区:[1]College of Resources and Environmental Science,Chongqing University,Chongqing 400044,China [2]State Key Laboratory of Coal Mine Disaster Dynamics and Control,Chongqing University,Chongqing 400044,China
出 处:《International Journal of Mining Science and Technology》2017年第5期867-871,共5页矿业科学技术学报(英文版)
基 金:supported by the National Natural Science Foundation of China(Nos.51374258,51504046,51404045);Program for Changjiang Scholars and Innovative Research Team in University of China(No.IRT13043);the National Basic Research Program of China(No.2014CB239206)
摘 要:A method of hydraulic grid slotting and hydraulic fracturing was proposed to enhance the permeability of low permeability coal seam in China. Micro-structural development and strength characteristics of coal were analysed to set up the failure criterion of coal containing water and gas, which could describe the destruction rule of coal containing gas under the hydraulic measures more accurately. Based on the theory of transient flow and fluid grid, the numerical calculation model of turbulence formed by high pressure oscillating water jet was used. With the high speed photography test, dynamic evolution and pulsation characteristics of water jet water analysed which laid a foundation for mechanism analysis of rock damage under water jet. Wave equation of oscillating water jet slotting was established and the mechanism of coal damage by the impact stress wave under oscillation jet was revealed. These provide a new method to study the mechanism of porosity and crack damage under high pressure jet.Fracture criterion by jet slotting was established and mechanism of crack development controlled by crack zone between slots was found. The fractures were induced to extend along pre-set direction,instead of being controlled by original stress field. The model of gas migration through coal seams after the hydraulic measures for grid slotting and fracking was established. The key technology and equipment for grid slotting and fracking with high-pressure oscillating jet were developed and applied to coal mines in Chongqing and Henan in China. The results show that the gas permeability of coal seam is enhanced by three orders of magnitude, efficiency of roadway excavation and mining is improved by more than 57%and the cost of gas control is reduced by 50%.A method of hydraulic grid slotting and hydraulic fracturing was proposed to enhance the permeability of low permeability coal seam in China. Micro-structural development and strength characteristics of coal were analysed to set up the failure criterion of coal containing water and gas, which could describe the destruction rule of coal containing gas under the hydraulic measures more accurately. Based on the theory of transient flow and fluid grid, the numerical calculation model of turbulence formed by high pressure oscillating water jet was used. With the high speed photography test, dynamic evolution and pulsation characteristics of water jet water analysed which laid a foundation for mechanism analysis of rock damage under water jet. Wave equation of oscillating water jet slotting was established and the mechanism of coal damage by the impact stress wave under oscillation jet was revealed. These provide a new method to study the mechanism of porosity and crack damage under high pressure jet.Fracture criterion by jet slotting was established and mechanism of crack development controlled by crack zone between slots was found. The fractures were induced to extend along pre-set direction,instead of being controlled by original stress field. The model of gas migration through coal seams after the hydraulic measures for grid slotting and fracking was established. The key technology and equipment for grid slotting and fracking with high-pressure oscillating jet were developed and applied to coal mines in Chongqing and Henan in China. The results show that the gas permeability of coal seam is enhanced by three orders of magnitude, efficiency of roadway excavation and mining is improved by more than 57%and the cost of gas control is reduced by 50%.
关 键 词:Coal SEAM PERMEABILITY High pressure water JET GRID SLOTTING and fracking Gas extraction
分 类 号:TE37[石油与天然气工程—油气田开发工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...