检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘庆[1] 刘晓[1] 尹晓丽[1] 李春明[1] Liu Qing;Liu Xiao;Yin Xiaoli;Li Chunming(Mechanical and Control Engineering Department of Shengli College,China University of Petroleum,Dongying 257061,China)
机构地区:[1]中国石油大学胜利学院机械与控制工程学院,山东东营257061
出 处:《甘肃科学学报》2017年第5期15-21,共7页Journal of Gansu Sciences
基 金:山东省自然科学基金资助项目(Q2006A08)
摘 要:从共轭梯度法的基本思想出发,在前一寻优方向起点和终点的负梯度向量平移所决定的平面内确定共轭方向,并提出二维和三维优化问题的共轭方向计算公式。根据向量的几何关系和矢量加减运算的几何意义,推导由任一寻优方向起点和终点的梯度所确定的共轭方向。此方法可用于多维优化问题的求解。提出新算法的寻优步骤,并与众多经典共轭方向计算公式相比。该算法不仅具有理论严密性,而且寻优有效,具有二次终止性。Starting from the basic concept of conjugate gradient method,the conjugate direction was confirmed in the plane,which was determined by the translation of the negative gradient vector at the starting point and the end point of the previous optimization direction,and the conjugate directions calculation fomula of two-dimensional and three-dimensional optimization problems were presented.According to the geometric relationship of vectors and the geometric meaning of vector addition and subtraction,the conjugate direction determined by the gradient of the starting point and the end point of any optimization direction was deduced.This method could be used to solve the multidimensional optimization problem.The optimization procedure of the new algorithm was proposed.Compared with many classical conjugate direction calculation formulas,the algorithm was not only theoretical rigorous,but also efficient and had quadratic terminability.
分 类 号:O224[理学—运筹学与控制论] TP202[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.236