Determination of the desiccation behavior of clay slurries  被引量:2

Determination of the desiccation behavior of clay slurries

在线阅读下载全文

作  者:Khan Faseel Suleman Azam Shahid 

机构地区:[1]Environmental Systems Engineering, University of Regina, Regina, SK S4S 0A2, Canada

出  处:《International Journal of Mining Science and Technology》2017年第6期981-988,共8页矿业科学技术学报(英文版)

基  金:the Natural Sciences and Engineering Research Council of Canada for providing financial assistance

摘  要:The main objective of this study was to determine the desiccation behavior of clay slurries. A clay slurry with high water adsorption capacity(W_L = 180%,W_P 60%,W_s = 20) was used to determine the soil water characteristic curve(SWCC), shrinkage curve, and hydraulic conductivity. The last parameter was determined similar to the Instantaneous Profile Method using evaporation tests. Results indicated that the clay slurry had an air entry value(AEV) of 1000 kPa and a residual suction of 5000 kPa that occurred at the plastic limit and the shrinkage limit, respectively. The discrepancy between theoretical and measured shrinkage limit was due to the gradual increase in clay particle contact. Unlike soils, the saturated hydraulic conductivity varied by two orders of magnitude(4×10 ~10 m/s at 20 kPa to 3 x 10 ~12 m/s at AEV). The unsaturated k further decreased to 10 ~14 m/s at 6 x 10~4 kPa beyond which vapor flow took place.The main objective of this study was to determine the desiccation behavior of clay slurries. A clay slurry with high water adsorption capacity(W_L = 180%,W_P 60%,W_s = 20) was used to determine the soil water characteristic curve(SWCC), shrinkage curve, and hydraulic conductivity. The last parameter was determined similar to the Instantaneous Profile Method using evaporation tests. Results indicated that the clay slurry had an air entry value(AEV) of 1000 kPa and a residual suction of 5000 kPa that occurred at the plastic limit and the shrinkage limit, respectively. The discrepancy between theoretical and measured shrinkage limit was due to the gradual increase in clay particle contact. Unlike soils, the saturated hydraulic conductivity varied by two orders of magnitude(4×10 ~10 m/s at 20 kPa to 3 x 10 ~12 m/s at AEV). The unsaturated k further decreased to 10 ~14 m/s at 6 x 10~4 kPa beyond which vapor flow took place.

关 键 词:CLAY SLURRY Soil water characteristic CURVE Shrinkage CURVE UNSATURATED hydraulic conductivity Instantaneous Profile Method 

分 类 号:S152[农业科学—土壤学] TD926.4[农业科学—农业基础科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象