Constitutive model of disturbed soil-structure interface within mining subsidence areas  被引量:1

Constitutive model of disturbed soil-structure interface within mining subsidence areas

在线阅读下载全文

作  者:CHANG Hong XIA Jun-wu 常虹;夏军武

机构地区:[1]Mechanics and Civil Engineering,China University of Mining&Technology,Xuzhou 221116,China [2]Key Laboratory of Deep Coal Resources Mining of Ministry of Education(China University of Mining&Technology),Xuzhou 221116,China

出  处:《Journal of Central South University》2017年第7期1676-1683,共8页中南大学学报(英文版)

基  金:Project(51274192)supported by National Natural Science Foundation of China

摘  要:The characteristics of a disturbed soil-structure interface were studied based on the variation regularities of the disturbed soil within its mining subsidence area using direct shear tests.The effects of the initial moisture content on the shear strength parameters of the soil-structure interfaces were analyzed.The results indicate that the cohesion of the interface initially increased and then decreased as the initial moisture content increased.In addition,the friction angle of the interface decreased as the initial moisture content increased.A constitutive model of the disturbed soil-structure interface,a rigid-plastic model based on the initial void ratio and saturability(VSRP) model,was established based on the results.In order to validate this model,a finite element analysis of DRS-1 direct shear tests was conducted.The finite element model calculations coincided with the results of the DRS-1 direct shear tests.The proposed model also reflected the nonlinear features of the soil-structure interface.The characteristics of a disturbed soil-structure interface were studied based on the variation regularities of the disturbed soil within its mining subsidence area using direct shear tests. The effects of the initial moisture content on the shear strength parameters of the soil-structure interfaces were analyzed. The results indicate that the cohesion of the interface initially increased and then decreased as the initial moisture content increased. In addition, the friction angle of the interface decreased as the initial moisture content increased. A constitutive model of the disturbed soil-structure interface, a rigid-plastic model based on the initial void ratio and saturability (VSRP) model, was established based on the results. In order to validate this model, a finite element analysis of DRS-1 direct shear tests was conducted. The finite element model calculations coincided with the results of the DRS-1 direct shear tests. The proposed model also reflected the nonlinear features of the soil-structure interface.

关 键 词:mining SUBSIDENCE areas soil-structure INTERFACE RIGID-PLASTIC model FINITE ELEMENT method 

分 类 号:TD327[矿业工程—矿井建设]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象