Differences in leaf functional traits between exotic and native Compositae plant species  被引量:5

Differences in leaf functional traits between exotic and native Compositae plant species

在线阅读下载全文

作  者:WANG Cong-yan LIU Jun ZHOU Jia-wei XIAO Hong-guang 王从彦;刘君;周嘉伟;肖鸿光

机构地区:[1]School of the Environment and Safety Engineering,Jiangsu University [2]State Key Laboratory of Soil and Sustainable Agriculture (Institute of Soil Science,Chinese Academy of Sciences)

出  处:《Journal of Central South University》2017年第10期2468-2474,共7页中南大学学报(英文版)

基  金:Project(31300343)supported by the National Natural Science Foundation of China;Project(Y20160023)supported by Open Science Research Fund of State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,China;supported by Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment,China

摘  要:This study aims to determine the differences in leaf functional traits and phenotypic plasticity of leaf functional traits between exotic and native Compositae plant species. Leaf width of exotic plants was significantly lower than that of native species. Leaf length, specific leaf area(SLA), single-leaf wet and dry weights, leaf moisture, and leaf thickness of exotic plants were also lower than those of native species but not significantly. The leaf shape index of exotic plants was higher than that of native species but not significantly. This implies that the relatively low leaf construction cost for exotic plants may play an important role in the success of their invasions. The higher leaf shape index and lower leaf width of exotic plants can enhance the efficiency of resource capture(especially sunlight capture) via adjustments to leaf shape and size, thereby increasing the survival of exotic plants. The plasticity indices of single-leaf wet weight and leaf thickness of exotic plants were significantly lower than those of native species. The lower phenotypic plasticity of single-leaf wet weight and leaf thickness of exotic plants may be the result of a cost to plasticity. That is, if the plasticity is too high, the fitness of plant species might be reduced sharply under unfavorable environments. Thus, lower plasticity of leaf functional traits may compensate for the negative impact of adverse environments and stabilize leaf construction costs for exotic plants. Moreover, reduced phenotypic plasticity might be one of the key competitive strategies by which exotic plants successfully invade new habitats. Overall, exotic plants did not always exhibit higher values of leaf functional traits or increased phenotypic plasticity of leaf functional traits compared with native species.This study aims to determine the differences in leaf functional traits and phenotypic plasticity of leaf functional traits between exotic and native Compositae plant species. Leaf width of exotic plants was significantly lower than that of native species. Leaf length, specific leaf area(SLA), single-leaf wet and dry weights, leaf moisture, and leaf thickness of exotic plants were also lower than those of native species but not significantly. The leaf shape index of exotic plants was higher than that of native species but not significantly. This implies that the relatively low leaf construction cost for exotic plants may play an important role in the success of their invasions. The higher leaf shape index and lower leaf width of exotic plants can enhance the efficiency of resource capture(especially sunlight capture) via adjustments to leaf shape and size, thereby increasing the survival of exotic plants. The plasticity indices of single-leaf wet weight and leaf thickness of exotic plants were significantly lower than those of native species. The lower phenotypic plasticity of single-leaf wet weight and leaf thickness of exotic plants may be the result of a cost to plasticity. That is, if the plasticity is too high, the fitness of plant species might be reduced sharply under unfavorable environments. Thus, lower plasticity of leaf functional traits may compensate for the negative impact of adverse environments and stabilize leaf construction costs for exotic plants. Moreover, reduced phenotypic plasticity might be one of the key competitive strategies by which exotic plants successfully invade new habitats. Overall, exotic plants did not always exhibit higher values of leaf functional traits or increased phenotypic plasticity of leaf functional traits compared with native species.

关 键 词:LEAF functional TRAITS specific LEAF area (SLA) PHENOTYPIC plasticity EXOTIC plants COMPOSITAE 

分 类 号:Q944.3[生物学—植物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象