Squeezing rock conditions at phyllite-slate zone in Golab water conveyance tunnel,Iran:A case study  被引量:5

Squeezing rock conditions at phyllite-slate zone in Golab water conveyance tunnel, Iran:A case study

在线阅读下载全文

作  者:Rahmati Asghar Faramarzi Lohrasb Darbor Mohammad 

机构地区:[1]Department of Mining Engineering,Isfahan University of Technology,Isfahan,84156-83111,Iran

出  处:《Journal of Central South University》2017年第10期2475-2485,共11页中南大学学报(英文版)

摘  要:Squeezing ground in tunneling is associated with large deformation of the tunnel face. In this study, squeezing characteristics of the ground and rock conditions in Golab water conveyance tunnel, Iran, are discussed and the classification of squeezing behavior around zones where the problems occurred is presented. The squeezing conditions were investigated using empirical and semi empirical methods. In the next step, creep convergence of the tunnel with Burger's model was simulated by the numerical method. Numerical analysis showed that wall displacement(64.1 mm) of the Golab tunnel was more than allowable strain(1% of the tunnel diameter), therefore, it was found that squeezing phenomenon could exist, leading to the failure of the support system. Numerical analysis at the phyllite-slate zone also showed squeezing conditions due to the weakness of rock mass and high overburden that this situation cause failure in the segmental lining. In this research, failure in segmental lining in phyllite-slate zone verified the results of the numerical modeling.Squeezing ground in tunneling is associated with large deformation of the tunnel face. In this study, squeezing characteristics of the ground and rock conditions in Golab water conveyance tunnel, Iran, are discussed and the classification of squeezing behavior around zones where the problems occurred is presented. The squeezing conditions were investigated using empirical and semi empirical methods. In the next step, creep convergence of the tunnel with Burger's model was simulated by the numerical method. Numerical analysis showed that wall displacement(64.1 mm) of the Golab tunnel was more than allowable strain(1% of the tunnel diameter), therefore, it was found that squeezing phenomenon could exist, leading to the failure of the support system. Numerical analysis at the phyllite-slate zone also showed squeezing conditions due to the weakness of rock mass and high overburden that this situation cause failure in the segmental lining. In this research, failure in segmental lining in phyllite-slate zone verified the results of the numerical modeling.

关 键 词:SQUEEZING large deformation Burger’s model numerical analysis failure SEGMENTAL LINING 

分 类 号:TV672.1[水利工程—水利水电工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象