Modeling multi regional counter flow combustion of lycopodium dust cloud with considering radiative heat loss  

Modeling multi regional counter flow combustion of lycopodium dust cloud with considering radiative heat loss

在线阅读下载全文

作  者:Bidabadi Mehdi Ebrahimi Farzaneh Bordbar Vahid 

机构地区:[1]School of Mechanical Engineering,Department of Energy Conversion,Combustion Research Laboratory,Iran University of Science and Technology(IUST),Tehran 1684613114,Iran

出  处:《Journal of Central South University》2017年第11期2638-2648,共11页中南大学学报(英文版)

摘  要:In this work, an analytical model is presented to simulate the combustion process of organic dust with considering radiative heat loss effect in counterflow configuration. A thermal model has been generated to estimate the flame propagation speed in various dust concentrations. The structure of premixed flame in a symmetric configuration, containing uniformly distributed volatile fuel particles, with nonunity Lewis number is examined with strain rate issue. The flame structure is divided into six zones: first heating, drying, second heating, volatile evaporation, reaction and post-flame zones. At first, the governing equations of lycopodium combustion dust particles are written for each zone. Finally, boundary conditions and matching conditions are applied for each zone in order to solve the differential equations. The purpose of this article is to analyze radiation heat transfer on lycopodium flame propagation dust particles and characteristics to check the effect of parameters on combustion.In this work, an analytical model is presented to simulate the combustion process of organic dust with considering radiative heat loss effect in counterflow configuration. A thermal model has been generated to estimate the flame propagation speed in various dust concentrations. The structure of premixed flame in a symmetric configuration, containing uniformly distributed volatile fuel particles, with nonunity Lewis number is examined with strain rate issue. The flame structure is divided into six zones: first heating, drying, second heating, volatile evaporation, reaction and post-flame zones. At first, the governing equations of lycopodium combustion dust particles are written for each zone. Finally, boundary conditions and matching conditions are applied for each zone in order to solve the differential equations. The purpose of this article is to analyze radiation heat transfer on lycopodium flame propagation dust particles and characteristics to check the effect of parameters on combustion.

关 键 词:RADIATIVE heat COUNTERFLOW LYCOPODIUM ANALYTICAL model 

分 类 号:TK16[动力工程及工程热物理—热能工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象