一种基于灰度和位置的双置乱图像算法  

Image Algorithm based on Dual-Scrambling of Gray and Position

在线阅读下载全文

作  者:王毅[1] 徐亮亮 邹胜福[3] WANG Yi;XU Liang-liang;ZOU Sheng-fu(Equipment Department of Training Ship Detachment Dalian Naval Academy, Dalian Liaoning 116000, China;Naval Academy Equipment Information Systems Agency, Beijing 100861, China;No.30 Institute of CETC, Chengdu Sichuan 610041, China)

机构地区:[1]大连舰艇学院训练舰支队装备部,辽宁大连116000 [2]海军装备信息系统局,北京100861 [3]中国电子科技集团公司第三十研究所,四川成都610041

出  处:《通信技术》2017年第12期2856-2866,共11页Communications Technology

摘  要:信息隐藏是信息安全的重要分支,常利用流媒体冗余对信息做隐藏,实现信息的隐蔽传输。以数字水印技术为依托,将隐藏信息做置乱处理,发现单置乱效果差、多次置乱后能恢复出信息。因此,借鉴Arnold置乱思想对隐藏信息做灰度、位置双重置乱,其单次置乱效果要比多次单置乱效果好,且置乱参数可根据用户自行设定作为隐藏密钥,实现了更安全的信息隐藏传输。在嵌入算法方面,采用较传统LSB和小波分解对比检验置乱效果,发现所提双置乱算法性能较单置乱更优,算法复杂度和恢复也极为简单,能很好地应用于很多场景。Information hiding is an important branch of information security,usually by using streaming media redundancy to hide information and achieve the information-hidden transmission.The hidden information is scrambled by using digital watermarking technology,and experiment indicates that a single operation would result in poor performance and the information could be fairly recovered after several scrambling.By referring to the idea of Arnold scrambling,scrambling is implemented on both gray scale and position,the resulted performances is better than that by a single scrambling,and the scrambling parameters can be set by the user as the information-hidden key thus realizing a more secure hidden-information transmission.As for the embedded algorithm,the LSB and wavelet decomposition are compared for their scrambling effects,and this comparison indicates that the proposed dual-scrambling algorithm performs better than the single scrambling algorithm,with low computation complexity and simple recovery,and thus could be applied to many actual scenes.

关 键 词:信息隐藏 ARNOLD置乱 最低比特位 小波分解 

分 类 号:TN918.91[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象