A Blackman-Harris windowed triple-spectrum-line interpolation method for measuring SNR of ADCs  被引量:2

基于Blackman-Harris窗三谱线插值测试ADC信噪比的方法(英文)

在线阅读下载全文

作  者:YU Zhi-guo SUN Yi-zhou HUANG Pu HE Qin GU Xiao-feng 虞致国;孙益洲;黄朴;何芹;顾晓峰(物联网技术应用教育部工程研究中心,江苏无锡214122;江南大学电子工程系,江苏无锡214122)

机构地区:[1]Engineering Research Center of IoT Technology Applications (Ministry of Education), Wuxi 214122, China [2]Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China

出  处:《Journal of Measurement Science and Instrumentation》2017年第4期321-327,共7页测试科学与仪器(英文版)

基  金:Summit of the Six Top Talents Program of Jiangsu Province(No.2013-DZXX-027);Fundamental Research Funds for the Central Universities(Nos.JUSRP51510,JUSRP51323B);Graduate Student Innovation Program for Universities of Jiangsu Province(Nos.SJLX16_0500,KYLX16_0776,SJCX17_0510)

摘  要:In the practical measurement of signal to noise ratio(SNR)of analog-to-digital converters(ADCs)by using fast Fourier transformation(FFT)method,the non-coherent sampling is inevitable,leading to spectral leakage which in turn affects the calculation accuracy and final measurement results.In this paper,a new method based on the Blackman-Harris windowed triple-spectrum-line interpolation is presented for the measurement of ADCs SNR by FFT.The simulation platform is built based on MATLAB and the behavioral dynamic models of the high-speed ADC products of Analog Devices Inc.(ADI)are simulated.The simulation results show that,even in the case of the maximum non-coherent degree,the SNR error is less than0.23dB and reaches the testing standards provided by ADI,confirming that the proposed method is effective for suppressing the spectral leakage effects and improving the SNR test accuracy.

关 键 词:Blackman-Harris windowed signal to noise ratio (SNR) triple-spectrum-line interpolation spectral leakage non-coherent sampling 

分 类 号:TN792[电子电信—电路与系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象