Vector-valued Inequalities for Commutators of Singular Integrals on Herz Spaces with Variable Exponents  

Vector-valued Inequalities for Commutators of Singular Integrals on Herz Spaces with Variable Exponents

在线阅读下载全文

作  者:WANG LI-WEI QU MENG SHU LI-SHENG Ji You-qing 

机构地区:[1]School of Mathematics and Physics,Anhui Polytechnic University [2]School of Mathematics and Computer Science,Anhui Normal University [3]不详

出  处:《Communications in Mathematical Research》2017年第4期363-376,共14页数学研究通讯(英文版)

基  金:The NSF(11471033)of China

摘  要:Based on the theory of variable exponents and BMO norms, we prove the vector-valued inequalities for commutators of singular integrals on both homogeneous and inhomogeneous Herz spaces where the two main indices are variable exponents.Furthermore, we show that a wide class of commutators generated by BMO functions and sublinear operators satisfy vector-valued inequalities.Based on the theory of variable exponents and BMO norms, we prove the vector-valued inequalities for commutators of singular integrals on both homogeneous and inhomogeneous Herz spaces where the two main indices are variable exponents.Furthermore, we show that a wide class of commutators generated by BMO functions and sublinear operators satisfy vector-valued inequalities.

关 键 词:variable exponent Herz spaces COMMUTATOR singular integral 

分 类 号:O177[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象