检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈德华[1] 殷苏娜 乐嘉锦[1] 王梅[1] 潘乔[1] 朱立峰[2] Chen Dehua;Yin Suna;Le Jiajin;Wang Mei;Pan Qiao;Zhu Lifeng(College of Computer Science and Technology, Donghua University, Shanghai 201600;Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025)
机构地区:[1]东华大学计算机科学与技术学院,上海201600 [2]上海交通大学医学院附属瑞金医院,上海200025
出 处:《计算机研究与发展》2017年第12期2920-2930,共11页Journal of Computer Research and Development
基 金:上海市科技创新行动计划项目(15511106900);上海市科技发展基金项目(16JC1400802);上海市信息化发展专项基金项目(XXXXFZ-01-14-6349)~~
摘 要:知识图谱(knowledge graph)链接预测可以解决知识图谱中缺失信息的发现和还原,是目前知识图谱领域的研究热点.传统的知识图谱链接预测方法大多面向静态的数据,并不适用于具有动态变化特性的时序知识图谱.时序知识图谱广泛存在于不同领域中,以临床医学领域为例,糖尿病作为一种典型的慢性病,其病程是一个疾病缓慢发展演化的过程.因此,在临床医学时序知识图谱上进行临床意义的链接预测,比如预测糖尿病的并发症,则需要考虑糖尿病病程发展随时间变化的时序特性,这也为传统的知识图谱链接预测方法带来巨大挑战.为此,结合临床医学事实知识的时序特性,提出一种基于LSTM序列增量学习的临床领域时序知识图谱链接预测模型.该模型结合LSTM长短期记忆单元递归神经网络在序列学习上的优势,通过构建基于LSTM的序列增量学习层,以端到端的方式提取时序知识图谱中的三元组时序特征,从而实现对时序知识图谱的链接预测.通过在糖尿病时序知识图谱上的实验,验证了模型的高效性、可用性及稳定性.Link prediction on knowledge graph is the main task of knowledge base completion,predicting whether a relationship existing in the knowledge base is likely to be true.However,traditional knowledge link prediction models are only appropriate for static data rather than temporal knowledge base.Temporal knowledge base exists on various fields.Take medical medicine field as example,diabetes is a typical chronic disease which evolves slowly.Thus,link prediction on clinical knowledge base such as diabetic complication requires the analysis on temporal characteristic of temporal knowledge base,which is a great challenge for traditional link prediction models.Thus,to address the prediction of temporal knowledge base,this paper proposes a long short term memory(LSTM)based model for temporal knowledge base.The proposed model adopts memory cells of LSTM for sequential learning,and then builds incremental learning layer.Afterwards,timing characteristics can be extracted by the way of end to end,which realizes the prediction on temporal knowledge base.In experiments,the proposed model in clinical temporal knowledge base shows significant improvements compared with baselines including Rescal,NTN,TransE,TransH,TransR and DNN.
关 键 词:时序知识图谱 知识图谱链接预测 转换模型TransR 长短期记忆网络 增量学
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.87