Role of equal-strain assumption in unit-cell theory for consolidation with vertical drains  被引量:2

Role of equal-strain assumption in unit-cell theory for consolidation with vertical drains

在线阅读下载全文

作  者:LEI Guo-hui XU Li-dan ZHENG Qiang NG Charles Wang Wai 雷国辉;徐梨丹;郑强;吴宏伟

机构地区:[1]Key Laboratory of Geomechanics and Embankment Engineering of the Ministry of Education,Geotechnical Research Institute, Hohai University [2]Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology

出  处:《Journal of Central South University》2017年第12期2914-2923,共10页中南大学学报(英文版)

基  金:Projects(51278171,51578213,41530637) supported by the National Natural Science Foundation of China;Project(B13024) supported by the"111"Project,China;Projects(2015B06014,2017B20614) supported by the Fundamental Research Funds for the Central Universities of China

摘  要:In the development of unit-cell theory for the analytical analysis of consolidation with vertical drains, the equal-strain assumption is often made with the intention of modelling consolidation under uniform settlement conditions. In contrast, the free-strain assumption for modelling consolidation under uniform load conditions is seldom employed, mainly because of the complexities involved in the analysis. This study derives a rigorous analytical solution to the generalised governing equations of free-strain consolidation with a vertical drain subjected to an instantaneous load. Calculated results from the newly proposed solution are compared with those from three available solutions derived based on the equal-strain assumption. Surprisingly good agreement is obtained in terms of excess pore-water pressure, degree of consolidation, and settlement. Horizontal profiles of settlement were not uniform before the end of consolidation. This indicates that the uniform settlement condition is not actually reproduced by the analytical solutions derived based on the equal-strain assumption. The equal-strain assumption is a sufficient but not necessary condition for deriving an analytical solution to unit-cell consolidation theory. The assumption plays no role in modelling consolidation under uniform settlement conditions but simplifies the analytical analysis of free-strain consolidation and results in an approximate solution of high accuracy for consolidation under uniform load conditions. Moreover, drain resistance and smear effects not only retard the consolidation rate, but also importantly shape the vertical and horizontal profiles of excess pore-water pressure, respectively.In the development of unit-cell theory for the analytical analysis of consolidation with vertical drains, the equal-strain assumption is often made with the intention of modelling consolidation under uniform settlement conditions. In contrast, the free-strain assumption for modelling consolidation under uniform load conditions is seldom employed, mainly because of the complexities involved in the analysis. This study derives a rigorous analytical solution to the generalised governing equations of free-strain consolidation with a vertical drain subjected to an instantaneous load. Calculated results from the newly proposed solution are compared with those from three available solutions derived based on the equal-strain assumption. Surprisingly good agreement is obtained in terms of excess pore-water pressure, degree of consolidation, and settlement. Horizontal profiles of settlement were not uniform before the end of consolidation. This indicates that the uniform settlement condition is not actually reproduced by the analytical solutions derived based on the equal-strain assumption. The equal-strain assumption is a sufficient but not necessary condition for deriving an analytical solution to unit-cell consolidation theory. The assumption plays no role in modelling consolidation under uniform settlement conditions but simplifies the analytical analysis of free-strain consolidation and results in an approximate solution of high accuracy for consolidation under uniform load conditions. Moreover, drain resistance and smear effects not only retard the consolidation rate, but also importantly shape the vertical and horizontal profiles of excess pore-water pressure, respectively.

关 键 词:CONSOLIDATION ground improvement PORE pressures SETTLEMENT vertical DRAIN 

分 类 号:TU43[建筑科学—岩土工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象