机构地区:[1]Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China,Hefei 230026, Anhui, China [2]Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Sector H‐12, Islamabad, Pakistan
出 处:《Chinese Journal of Catalysis》2017年第12期2110-2119,共10页催化学报(英文)
基 金:supported by the National Natural Science Foundation of China(51572253,21771171);Scientific Research Grant of Hefei Science Center of CAS(2015SRG-HSC048);cooperation between NSFC and Netherlands Organization for Scientific Research(51561135011);CAS-TWAS Scholarship Program~~
摘 要:We prepared the Fe3O4/g‐C3N4nanoparticles(NPs)through a simple electrostatic self‐assembly method with a3:97weight ratio to investigate their Fenton,photo‐Fenton and oxidative functionalities besides photocatalytic functionality.We observed an improvement of the Fenton and photo‐Fenton activities of the Fe3O4/g‐C3N4nanocomposites.This improvement was attributed to efficient charge transfer between Fe3O4and g‐C3N4at the heterojunctions,inhibition of electron‐hole recombination,a high surface area,and stabilization of Fe3O4against leaching by the hydrophobic g‐C3N4.The obtained NPs showed a higher degradation potential for rhodamine B(RhB)dye than those of Fe3O4and g‐C3N4.As compared to photocatalysis,the efficiency of RhB degradation in the Fenton and photo‐Fenton reactions was increased by20%and90%,respectively.Additionally,the horseradish peroxidase(HRP)activity of the prepared nanomaterials was studied with3,3,5,5‐tetramethylbenzidinedihydrochloride(TMB)as a substrate.Dopamine oxidation was also examined.Results indicate that Fe3O4/g‐C3N4nanocomposites offers more efficient degradation of RhB dye in a photo‐Fenton system compared with regular photocatalytic degradation,which requires a long time.Our study also confirmed that Fe3O4/g‐C3N4nanocomposites can be used as a potential material for mimicking HRP owing to its high affinity for TMB.These findings suggest good potential for applications in biosensing and as a catalyst in oxidation reactions.石墨相的氮化碳(g-C_3N_4)已被广泛用于光催化、水分解、光子检测器、电池、以及光电阴极.与其他光催化材料相比,g-C_3N_4具有价格低廉,易制备,无毒无污染等优点.此外,C_3N_4具有适宜的带隙(2.7 eV),能有效地吸收可见光.有关C_3N_4的光催化研究很多,但是其降解效率受限于电子空穴对的快速复合.因此,为了提高C_3N_4光催化反应效率,需要对其进行改性.磁铁矿(Fe_3O_4)广泛用于光催化和芬顿/光-芬顿反应.Fe_3O_4晶体具有反式尖晶石结构,其中Fe^(2+)和Fe^(3+)同时存在.研究表明,磁铁矿在酸性条件下催化效果显著,然而,它的比表面积小,随着反应时间的推移,铁离子会溶出,不利于有机物降解反应.因此,近来许多研究着重于磁铁矿复合物的制备,以提高磁铁矿的稳定性及催化性能.本文通过惰性氛围高温焙烧三聚氰胺制备了g-C_3N_4,再通过氯化铁和乙酸钠在乙醇中于180°C溶剂热反应,制备Fe_3O_4纳米粒子,最后通过静电自组装过程制备出Fe_3O_4/g-C_3N_4纳米复合材料.利用X射线衍射(XRD),扫描电子显微镜(SEM)及X射线光电子光谱(XPS)等手段验证其组成和结构.XRD结果表明,Fe_3O_4/g-C_3N_4复合材料中可以清晰看到Fe_3O_4和g-C_3N_4的衍射峰,说明这两种材料的晶相得以保持.SEM和TEM结果表明,Fe_3O_4纳米颗粒很好地附着在g-C_3N_4薄片上.XPS结果表明,氮化碳中存在典型的三种N峰;此外还存在铁的两种价态.光-芬顿活性测试中,相同条件下,Fe_3O_4/g-C_3N_4在60 min内将罗丹明B(RhB)几乎降解完全,而单组份的Fe_3O_4或g-C_3N_4对RhB的降解小于50%.可见,复合后的Fe_3O_4/g-C_3N_4光催化性能得到很大提升.单g-C_3N_4本身由于快速的电子空穴复合以及对双氧水的弱亲和力,因而对Rh B降解效果差.单独的Fe_3O_4由于在中性或者碱性条件下反而会抑制光催化芬顿活性.对于制备的Fe_3O_4/g-C_3N_4复合材料,具有以下优点:(1)电子在Fe^(3+)和g-
关 键 词:Fe3O4/g‐C3N4 nanocomposites Fenton reaction Dye degradation Peroxidase activity Horseradish peroxidase mimicking Dopamine oxidation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...